Skip to main content
Log in

Density and Thermal Expansion of Magnesium–Calcium Alloys in Solid and Liquid States

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental studies of the volumetric properties of the Mg2Ca intermetallic compound and eutectic magnesium–calcium alloys (with compositions of 10.5 and 73 at.% calcium) in the temperature range of 100 K to 1230 K of the solid and liquid states were carried out using the gamma-ray attenuation technique and the dilatometric method. Measurements of the density and volumetric thermal expansion coefficient of Mg–Ca melts, as well as the density change during melting-crystallization, were performed for the first time. The concentration dependences of the volumetric properties of the Mg–Ca system and approaches for calculating density and thermal expansion coefficients of promising magnesium–calcium alloys are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data presented in this article are available upon request from the corresponding author.

References

  1. C. Zehnder, K. Czerwinski, K.D. Molodov, S. Sandlöbes-Haut, J.S.L. Gibson, S. Korte-Kerzel, Mater. Sci. Eng. A 759, 754 (2019). https://doi.org/10.1016/j.msea.2019.05.092

    Article  Google Scholar 

  2. P. Zhou, H.R. Gong, J. Mech. Behav. Biomed. Mater. 8, 154 (2012). https://doi.org/10.1016/j.jmbbm.2011.12.001

    Article  Google Scholar 

  3. Y. Terada, M. Tsukahara, A. Shibayama, Y. Murata, M. Morinaga, Scr. Mater. 64, 1039 (2011). https://doi.org/10.1016/j.scriptamat.2011.02.016

    Article  Google Scholar 

  4. J.W. Seong, W.J. Kim, Corros. Sci. 98, 372 (2015). https://doi.org/10.1016/j.corsci.2015.05.068

    Article  Google Scholar 

  5. Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials 29, 1329 (2008). https://doi.org/10.1016/j.biomaterials.2007.12.021

    Article  Google Scholar 

  6. N.T. Kirkland, M.P. Staiger, D. Nisbet, C.H. Davies, N. Birbilis, JOM 63, 28 (2011). https://doi.org/10.1007/s11837-011-0089-z

    Article  Google Scholar 

  7. N. Terashita, E. Akiba, Mater. Trans. 45, 2594 (2004). https://doi.org/10.2320/matertrans.45.2594

    Article  Google Scholar 

  8. M. Deng, D. Höche, S.V. Lamaka, D. Snihirova, M.L. Zheludkevich, J. Power Sources. 396, 109 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.090

    Article  ADS  Google Scholar 

  9. M. Sakamoto, S. Akiyama, K. Ogi, J. Mater. Sci. Lett. 16, 1048 (1997). https://doi.org/10.1023/A:1018526708423

    Article  Google Scholar 

  10. A.A. Nayeb-Hashemi, J.B. Clark, Bull. Alloy Phase Diagr. 8, 58 (1987). https://doi.org/10.1007/BF02868900

    Article  Google Scholar 

  11. SpringerMaterials – properties of materials. (Springer Nature, 2023), https://materials.springer.com/. Accessed 14 February 2023

  12. F. Gingl, K. Yvon, Z. Krystallog. 206, 313 (1993). https://doi.org/10.1524/zkri.1993.206.12.313

    Article  Google Scholar 

  13. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, Thermophysical Properties of Matter, Volume 12 (Plenum Press, New York, l975).

  14. C. Wang, Z. Dong, B. Jiang, Z. Zheng, S. Wu, J. Song, A. Zhang, J. Xu, B. Yang, C. Zheng F. Pan, Lowering thermal expansion of Mg with the enhanced strength by Ca alloying. (SSRN, 2023), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4251250. https://doi.org/10.2139/ssrn.4251250. Accessed 14 Feb 2023.

  15. R.N. Abdullaev, ASh. Agazhanov, A.R. Khairulin, D.A. Samoshkin, S.V. Stankus, J. Eng. Thermophys. 31, 384 (2022). https://doi.org/10.1134/S181023282203002X

    Article  Google Scholar 

  16. J.F. Smith, O.N. Carlson, R.W. Vest, J. Electrochem. Soc. 103, 409 (1956). https://doi.org/10.1149/1.2430364

    Article  Google Scholar 

  17. D.T. Peterson, V.G. Fattore, J. Phys. Chem. 65, 2062 (1961). https://doi.org/10.1021/j100828a034

    Article  Google Scholar 

  18. J.G. Cook, M.J. Laubitz, M.P.V. Meer, Can. J. Phys. 53, 486 (1996). https://doi.org/10.1139/p75-062

    Article  ADS  Google Scholar 

  19. J.C. Schottmiller, A.J. King, F.A. Kanda, J. Phys. Chem. 62, 1446 (1958). https://doi.org/10.1021/j150569a024

    Article  Google Scholar 

  20. R.N. Abdullaev, R.A. Khairulin, Yu.M. Kozlovskii, ASh. Agazhanov, S.V. Stankus, Trans. Nonferr. Metal Soc. 29, 507 (2019). https://doi.org/10.1016/S1003-6326(19)64959-9

    Article  Google Scholar 

  21. R.N. Abdullaev, Yu.M. Kozlovskii, R.A. Khairulin, S.V. Stankus, Int. J. Thermophys. 36, 603 (2015). https://doi.org/10.1007/s10765-015-1839-x

    Article  ADS  Google Scholar 

  22. S.V. Stankus, R.A. Khairulin, High Temp. 30, 386 (1992)

    Google Scholar 

  23. A.A. Nayeb-Hashemi, J.B. Clark, in Binary Alloy Phase Diagrams, 2nd edn., ed. by T.B. Massalski (ASM International, Materials Park, 1990), pp.2520–2522

    Google Scholar 

  24. R.N. Abdullaev, R.A. Khairulin, ASh. Agazhanov, A.R. Khairulin, Yu.M. Kozlovskii, D.A. Samoshkin, Russ. J. Inorg. Chem. 68, 158 (2023). ((in printing))

    Google Scholar 

  25. Yu.M. Kozlovskii, S.V. Stankus, High Temp. 52, 536 (2014). https://doi.org/10.1134/S0018151X1403016X

    Article  Google Scholar 

  26. J.F. Smith, J.R. Ogren, J. Appl. Phys. 29, 1523 (1958). https://doi.org/10.1063/1.1722986

    Article  ADS  Google Scholar 

  27. C.B. Alcock, M.W. Chase, V. Itkin, J. Phys. Chem. Ref. Data. 22, 1 (1993). https://doi.org/10.1063/1.555935

    Article  ADS  Google Scholar 

  28. J.M. Newhouse, S. Poizeau, H. Kim, B.L. Spatocco, D.R. Sadoway, Electrochim. Acta. 91, 293 (2013). https://doi.org/10.1016/j.electacta.2012.11.063

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (Grant No. 20-79-10025).

Author information

Authors and Affiliations

Authors

Contributions

RNA contributed to writing; RAK contributed to gamma-method measurements; YMK contributed to dilatometric measurements; SVS contributed to supervision; ASA contributed to samples preparation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rasul N. Abdullaev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, R.N., Khairulin, R.A., Kozlovskii, Y.M. et al. Density and Thermal Expansion of Magnesium–Calcium Alloys in Solid and Liquid States. Int J Thermophys 44, 74 (2023). https://doi.org/10.1007/s10765-023-03187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03187-1

Keywords

Navigation