Skip to main content

Advertisement

Log in

High-pressure single-crystal X-ray diffraction study of jadeite and kosmochlor

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structures of natural jadeite, NaAlSi2O6, and synthetic kosmochlor, NaCrSi2O6, were studied at room temperature, under hydrostatic conditions, up to pressures of 30.4 (1) and 40.2 (1) GPa, respectively, using single-crystal synchrotron X-ray diffraction. Pressure–volume data have been fit to a third-order Birch–Murnaghan equation of state yielding V 0 = 402.5 (4) Å3, K 0 = 136 (3) GPa, and K 0  = 3.3 (2) for jadeite and V 0 = 420.0 (3) Å3, K 0 = 123 (2) GPa and K 0  = 3.61 (9) for kosmochlor. Both phases exhibit anisotropic compression with unit-strain axial ratios of 1.00:1.95:2.09 for jadeite at 30.4 (1) GPa and 1:00:2.15:2.43 for kosmochlor at 40.2 (1) GPa. Analysis of procrystal electron density distribution shows that the coordination of Na changes from 6 to 8 between 9.28 (Origlieri et al. in Am Mineral 88:1025–1032, 2003) and 18.5 (1) GPa in kosmochlor, which is also marked by a decrease in unit-strain anisotropy. Na in jadeite remains six-coordinated at 21.5 (1) GPa. Structure refinements indicate a change in the compression mechanism of kosmochlor at about 31 GPa in both the kinking of SiO4 tetrahedral chains and rate of tetrahedral compression. Below 31 GPa, the O3–O3–O3 chain extension angle and Si tetrahedral volume in kosmochlor decrease linearly with pressure, whereas above 31 GPa the kinking ceases and the rate of Si tetrahedral compression increases by greater than a factor of two. No evidence of phase transitions was observed over the studied pressure ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akaogi M, Tanaka A, Kobayashi M, Fukushima N, Suzuki T (2002) High-pressure transformations in NaAlSiO4 and thermodynamic properties of jadeite, nepheline, and calcium ferrite-type phase. Phys Earth Planet Inter 130:49–58

    Article  Google Scholar 

  • Angel RJ, Gasparik T, Ross NL, Finger LW, Prewitt CT, Hazen RM (1988) A silica-rich sodium pyroxene with six-coordinations silicon. Nature 335:156–158

    Article  Google Scholar 

  • Bell PM, Roseboom EH (1969) Melting relations of jadeite and albite to 45 kilobars with comments on melting diagrams of binary systems at high pressures. Mineral Soc Am Spec Pap 2:151–161

    Google Scholar 

  • Birch F, LeCompte P (1960) Temperature pressure plane for albite composition. Am J Sci 258:209–217

    Article  Google Scholar 

  • Boffa Ballaran T, Nestola F, Tribaudino M, Ohashi H (2009) Bulk modulus variation along the diopside–kosmochlor solid solution. Eur J Mineral 21:591–597

    Article  Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperatures crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Mineral 58:594–618

    Google Scholar 

  • Clark JR, Appleman DE, Papike JJ (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineral Soc Am Spec Pap 2:31–50

    Google Scholar 

  • Dera P, Lazarz JD, Lavina B (2011) Pressure-induced development of bonding in NiAs type compounds and polymorphism of NiP. J Solid State Chem 184:1997–2003

    Article  Google Scholar 

  • Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013) High-pressure single-crystal micro-X-ray diffraction (SCμXRD) analysis with GSE_ADA/RSV software. High Press Res 33:466–484

    Article  Google Scholar 

  • Downs RT (2003) Topology of the pyroxenes as a function of temperature, pressure and composition determined from the procrystal electron density. Am Mineral 88:556–566

    Google Scholar 

  • Harlow GE (1997) K in clinopyroxene at high pressure and temperature: an experimental study. Am Mineral 82:259–269

    Google Scholar 

  • Harlow GE, Olds EP (1987) Observations on terrestrial ureyite and ureyitic pyroxene. Am Mineral 72:126–136

    Google Scholar 

  • Holland TJB (1980) Reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am Mineral 65:129–134

    Google Scholar 

  • Hugh-Jones DA, Angel RJ (1994) A compressional study of MgSiO3 orthoenstatite up to 8.5 GPa. Am Mineral 79:405–410

    Google Scholar 

  • Hugh-Jones D, Sharp T, Angel R, Woodland A (1996) The transition of orthoferrosilite to high-pressure C2/c clinoferrosilite at ambient temperature. Eur J Mineral 8:1337–1345

    Google Scholar 

  • Kawai K, Tsuchiya T (2012) High-P, T phase relations in the NaAlSi2O6 system from first principles computation. Phys Chem Miner 39:305–310

    Article  Google Scholar 

  • Konzett J, Yang H, Frost DJ (2005) Phase relations and stability of magnetoplumbite- and crichtonite-series phases under upper-mantle P–T conditions: an experimental study to 15 GPa with implications for LILE metasomatism in the lithospheric mantle. J Petrol 46:749–781

    Article  Google Scholar 

  • Liu L (1978) High-pressure phase transformation of albite, jadeite, and nepheline. Earth Planet Sci Lett 4:183–186

    Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676. doi:10.1029/JB091iB05p04673

    Article  Google Scholar 

  • McCarthy AC, Downs RT, Thompson RM (2008a) Compressibility trends of the clinopyroxenes, and in situ high-pressure single-crystal X-ray diffraction study of jadeite. Am Mineral 93:198–209

    Article  Google Scholar 

  • McCarthy AC, Downs RT, Thompson RM, Redhammer GJ (2008b) In situ high-pressure single-crystal X-ray study of aegirine, NaFe3+Si2O6, and the role of M1 size in clinopyroxene compressibility. Am Mineral 93:1829–1837

    Article  Google Scholar 

  • Nestola F, Boffa Ballaran T, Liebske C, Bruno M, Tribaudino M (2006) High-pressure behavior along the jadeite NalAl2O6-aegirine NaFeSi2O6 solid solution up to 10 GPa. Phys Chem Miner 33:222–227

    Article  Google Scholar 

  • Nestola F, Boffa Ballaran T, Liebske C, Thompson R, Downs RT (2008) The effect of the hedenbergite substitution on the compressibility of jadeite. Am Mineral 93:1005–1013

    Article  Google Scholar 

  • Newton RC, Smith JV (1967) Investigations concerning the breakdown of albite at depth in the earth. J Geol 75:268–286

    Article  Google Scholar 

  • Nimis P (2002) The pressures and temperatures of formation of diamond based on thermobarometry of chromian diopside inclusions. Can Mineral 40:871–884

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single pyroxene thermobarometry for garnet peridotites. I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Miner Petrol 139:541–554

    Article  Google Scholar 

  • Ohashi Y (1982) A program to calculate the strain tensor from two sets of unit-cell parameters (STRAIN). In: Hazen RM, Finger LW (eds) Comparative crystal chemistry. Wiley, New York, pp 92–102

    Google Scholar 

  • Origlieri MJ, Downs RT, Thompson RM, Pommier CJS, Denton MB, Harlow GE (2003) High- pressure crystal structure of kosmochlor, NaCrSi2O6, and systematics of anisotropic compression in pyroxenes. Am Mineral 88:1025–1032

    Google Scholar 

  • Periotto B, Balic-Zunic T, Nestola F, Katerinopoulou A, Angel RJ (2012) Re-investigation of the crystal structure of enstatite under high-pressure conditions. Am Mineral 97:1741–1748

    Article  Google Scholar 

  • Plonka AM, Dera P, Irmen P, Rivers ML, Ehm L, Parise JB (2012) β-diopside, a new ultrahigh-pressure polymorph of CaMgSi2O6 with six-coordinated silicon. Geophys Res Lett 39:L24307. doi:10.1029/2012GL054023

    Article  Google Scholar 

  • Posner ES, Konzett J, Frost DJ, Downs RT, Yang H (2012) High-pressure synthetic (Na0.97Mg0.03)(Mg0.43Fe 3+0.17 Si0.40)Si2O6, with six-coordinated silicon, isostructural with P2/n omphacite. Acta Crystallogr A E68(2):i18

    Google Scholar 

  • Prewitt CT, Burnham CW (1966) The crystal structure of jadeite, NaAlSi2O6. Am Mineral 51:956–975

    Google Scholar 

  • Rivers M, Prakapenka VB, Kubo A, Pullins C, Holl CM, Jacobsen SD (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28:273–292

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Secco L, Martignago F, Dal Negro A, Reznitskii LZ, Sklyarov EV (2002) Crystal chemistry of Cr3+–V3+-rich clinopyroxenes. Am Mineral 87:709–714

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A A64:112–122

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Carlton

    Google Scholar 

  • Thompson RM, Downs RT (2003) Model pyroxenes I: ideal pyroxene topologies. Am Mineral 88:653–666

    Google Scholar 

  • Thompson RM, Downs RT (2004) Model pyroxenes II: structural variation as a function of tetrahedral rotation. Am Mineral 89:614–628

    Google Scholar 

  • Webb SL, Jackson I (1993) The pressure dependence of the elastic moduli of single-crystal orthopyroxene (Mg0.8Fe0.2)SiO3. Eur J Mineral 5:1111–1119

    Article  Google Scholar 

  • Woodland AB (1998) The orthorhombic to high-P monoclinic phase transition in Mg–Fe pyroxenes: can it produce a seismic discontinuity? Geophys Res Lett 25:1241–1244

    Article  Google Scholar 

  • Yagi A, Suzuki T, Akaogi M (1994) High pressure transitions in the system KAlSi3O8–NaAlSi3O8. Phys Chem Miner 21:12–17

    Article  Google Scholar 

  • Yang H, Konzett J (2005) Crystal chemistry of a high-pressure C2/c clinopyroxene with six-coordinated silicon. Am Mineral 90:1223–1226

    Article  Google Scholar 

  • Yang H, Prewitt CT (2000) Chain and layer silicates at high temperatures and pressures. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, 41. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 211–255

    Google Scholar 

  • Yang H, Konzett J, Frost DJ, Downs RT (2009) X-ray diffraction and Raman spectroscopic study of clinopyroxenes with six-coordinated Si in the Na(Mg0.5Si0.5)Si2O6–NaAlSi2O6 system. Am Mineral 94:942–949

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Hafner SS, Kutoglu A (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. Am Mineral 82:245–258

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Fabrizio Nestola for his helpful review and the editor for handling our manuscript. E. S. P. wishes to acknowledge the Downs Research Group for supporting her participation in this project. P. D. wishes to acknowledge National Science Foundation Division of Earth Sciences Geophysics Grant No. 1344942. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-1128799) and Department of Energy—Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther S. Posner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posner, E.S., Dera, P., Downs, R.T. et al. High-pressure single-crystal X-ray diffraction study of jadeite and kosmochlor. Phys Chem Minerals 41, 695–707 (2014). https://doi.org/10.1007/s00269-014-0684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0684-y

Keywords

Navigation