Skip to main content
Log in

Ab initio quantum chemical investigation of arsenic sulfide molecular diversity from As4S6 and As4

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The structural diversity of arsenic sulfide molecules in compositions between As4S6 and As4 was investigated using ab initio quantum chemical calculations. The As4S6 molecule consists of four trigonal pyramid coordinations of As atoms bonding to three S atoms. In the As4S5 composition, only one type of molecular configuration corresponds to an uzonite-type molecule. In the As4S4 composition, two molecular configurations exist with realgar-type and pararealgar-type molecules. Three molecular configurations are in the As4S3 composition. The first configuration comprises trigonal pyramidal As atom coordinations of two types: bonding to two S atoms and one As atom, and bonding to one S atom and two As atoms. The second is the molecular configuration of dimorphite. The third comprises trigonal pyramidal As atom coordinations of two types: bonding to three As atoms, and bonding to one As atom and two S atoms. The As4S2 composition allows molecular configurations of two types. One is comprised of trigonal pyramidal As atom configurations of one type bonding to two As atoms and one S atom. The other comprises trigonal pyramidal As atom coordinations of three types: bonding to two S atoms and one As atoms, bonding to one S atom and two As atoms, and bonding to three As atoms. The As4S molecule has trigonal pyramidal As atom coordinations of two types: bonding to one S atom and two As atoms, and bonding to three As atoms. The As4S composition permits only one molecular configuration, which suggests that the mineral duranusite comprises the As4S molecular geometry. In all, ten molecular configurations are predicted in the molecular hierarchy of the arsenic sulfide binary system. The simulated Raman spectral profiles are helpful in searching for undiscovered arsenic sulfide minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Banerjee A, Jensen JO, Jensen JL (2003) A theoretical study of As4S4: bonding, vibrational analysis and infrared and Raman spectra. J Mol Stru Theochem 626:63–75

    Article  Google Scholar 

  • Bindi L, Popova VI, Bonazzi P (2003) Uzonite, As4S5, from the type-locality: X-ray single-crystal study and lighting experiments. Can Miner 41:1463–1468

    Article  Google Scholar 

  • Bonazzi P, Bindi L (2008) A crystallographic review of arsenic sulfides: effects of chemical variations and changes induced by exposure to light. Zeits Kristal 223:132–147

    Google Scholar 

  • Bonazzi P, Menchetti S, Pratesi G (1995) The crystal structure of pararealgar, As4S4. Am Miner 80:400–403

    Google Scholar 

  • Bonazzi P, Bindi L, Popova V, Pratesi G, Menchetti S (2003) Alacranite, As8S9: structural study of the holotype and re-assignment of the original chemical formula. Am Miner 88:1796–1800

    Google Scholar 

  • Bonazzi P, Lampronti GI, Bindi L, Zanardi S (2005) Wakabayashilite, [(As, Sb)6S9][As4S5]: Crystal structure, pseudosymmetry, twinning, and revised chemical formula. Am Miner 90:1108–1114

    Article  Google Scholar 

  • Bullen HA, Dorko MJ, Oman JK, Garrett SJ (2003) Valence and core-level binding energy shifts in realgar (As4S4) and pararealgar (As4S4) arsenic sulfides. Surf Sci 531:319–328

    Article  Google Scholar 

  • Douglass DL, Shing C, Wang G (1992) The light-induced alteration of realgar to pararealgar. Am Miner 77:1266–1274

    Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria, GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr.JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT

  • Frisch MJ, Yamaguchi Y, Gaw JF, Schaefer HF III (1986) Analytic Raman intensities from molecular electronic wave functions. J Chem Phys 84:531–532

    Article  Google Scholar 

  • Jason ME, Ngo T, Rahman S (1997) Products and mechanisms in the oxidation of phosphorus by sulfur at low temperature. Inorg Chem 36:2633–2640

    Article  Google Scholar 

  • Johan Z, Laforet C, Picot P, Feraud J (1973) Duranusite, As4S, a new mineral. Bull Soci Franc Miner Cristall 96:131–134

    Google Scholar 

  • Kalendarev RI, Sazonov AI, Rodionov AN, Chikvaidze GV, Eiduss JA (1984) Properties of vapour-deposited yellow arsenic films at various condensation conditions. Mat Res Bull 19:11–15

    Article  Google Scholar 

  • Kampf AR, Downs RT, Housley RM, Jenkins RA, Hyrsl J (2011) Anorpiment, As2S3, the triclinic dimorph of orpiment. Miner Mag 75:2857–2867

    Article  Google Scholar 

  • Kornath AJ, Kaufmann A, Cappellacci S (2009) Raman spectroscopic studies on matrix-isolated arsenic and antimony molecules As4 and Sb4 in noble gas matrices. J Mol Spectr 255:189–193

    Article  Google Scholar 

  • Kutoglu A (1976) Darstellung und Kristallstruktur einer neuen isomeren Form von As4S4. Zeits Anorg Allgem Chem 419:176–184

    Article  Google Scholar 

  • Kyono A, Kimata M, Hatta T (2005) Light-induced degradation dynamics in realgar: in situ structural investigation using single crystal X-ray diffraction study and X-ray photoelectron spectroscopy. Am Miner 90:1563–1570

    Article  Google Scholar 

  • Marquez-Zavalia F, Craig JR, Solberg TN (1999) Duranusite, product of realgar alteration, Mina Capillitas, Argentina. Can Miner 37:1255–1259

    Google Scholar 

  • Mladenova V (2000) Alacranite and duranusite from Mareshnitsa occurrence, Eastern Rhodopes –New minerals for Bulgaria. Comp Rend l’Acad Bulg Sci 53:67–70

    Google Scholar 

  • Mullen DJE, Nowacki W (1972) Refinement of the crystal structures of realgar, AsS and orpiment, As2S3. Zeits Kristal 136:48–65

    Article  Google Scholar 

  • Muniz-Miranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectroscopic investigation and normal mode analysis of As4S4 polymorphs. Spectrochim Acta A52:1391–1401

    Google Scholar 

  • Naumov P, Makreski P, Jovanovski G (2007) Direct atomic scale observation of linkage isomerization of As4S4 clusters during the photoinduced transition of realgar to pararealgar. Inorg Chem 46:10624–10631

    Article  Google Scholar 

  • Naumov P, Makreski P, Petrusevski G, Runcevski T, Jovanovski G (2010) Visualization of a discrete solid-state process with steady-state X-ray diffraction: observation of hopping of sulfur atoms in single crystals of realgar. J Am Chem Soc 132:11398–11401

    Article  Google Scholar 

  • Nelson RDJr, Lide DRJr, Maryott AA (1967) Selected values of electric dipole moments for molecules in the gas phase. National Reference Data Series; National Bureau of Standards (NSRDS-NBS) 10, Washington, DC

  • Porter EJ, Sheldrick GM (1971) Crystal structure of piperidinium hexathiotetra-arsenate. J Chem Soc A20:3130–3132

    Google Scholar 

  • Porter EJ, Sheldrick GM (1972) Crystal structure of a new crystalline modification of tetra-arsenic tetrasulphide (2,4,6,8-tetrathia-1,3,5,7-tetraarsatricyclo[3,3,0,03,7]-octane). J Chem Soc Dal Trans 13:1347–1349

    Article  Google Scholar 

  • Rodionov AN, Kalendarev RI, Tchikvaidze GV, Eiduss JA (1979) A new phase in solid state arsenic. Nature 281:60

    Article  Google Scholar 

  • Rodionov A, Kalendarev R, Eiduss J, Zhukovskii Y (1996) Polymerization of molecular (yellow) arsenic. J Mol Struc 380:257–266

    Article  Google Scholar 

  • Sheldrick WS, Kaub JZ (1985) An isolated cyclic thioarsenate(III) anion -Preparation and structure of (enH2)3(As3S6)2·6en. Zeits Naturfor B40:19–21

    Google Scholar 

  • Smith DM, Park CW, Ibers JA (1996) Preparation and structures of the 2.2.2-cryptand(1 +) salts of the [Sb2Se4]2−, [As2S4]2−, [As10S3]2−, and [As4Se6]2− anions. Inorg Chem 35:6682–6687

    Article  Google Scholar 

  • Von Schnering HG, Hönle W (1988) Bridging chasms with polyphosphides. Chem Rev 88:243–273

    Article  Google Scholar 

  • Wendel K, Muller U (1995) The cyclic thioarsenate(III) (PPh4)2As2S6. Zeits Anorg Allgem Chem 621:979–981

    Article  Google Scholar 

  • Whitfield HJ (1970) The crystal structure of tetra-arsenic trisulphide. J Chem Soc Dal Trans A1800-1803. doi:10.1039/J19700001800

  • Whitfield HJ (1973a) Crystal structure of the β-form of tetra-arsenic trisulphide. J Chem Soc Dal Trans 17:1737–1738

    Article  Google Scholar 

  • Whitfield HJ (1973b) Crystal and molecular structure of tetra-arsenic pentasulphide. J Chem Soc Dal Trans 1740-1742. doi:10.1039/DT9730001740

  • Wood PT, Schimek GL, Kolis JW (1996) Synthesis and characterization of novel one-dimensional phases from supercritical ammonia: Cs3Ag2Sb3S8, α- and β-Cs2AgSbS4, and Cs2AgAsS4. Chem Mat 8:721–726

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. The work was supported by a Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science (project no. 24740352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kyono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyono, A. Ab initio quantum chemical investigation of arsenic sulfide molecular diversity from As4S6 and As4 . Phys Chem Minerals 40, 717–731 (2013). https://doi.org/10.1007/s00269-013-0607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0607-3

Keywords

Navigation