Skip to main content

Advertisement

Log in

Thermal equation of state of synthetic orthoferrosilite at lunar pressures and temperatures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Iron-rich orthopyroxene plays an important role in models of the thermal and magmatic evolution of the Moon, but its density at high pressure and high temperature is not well-constrained. We present in situ measurements of the unit-cell volume of a synthetic polycrystalline end-member orthoferrosilite (FeSiO3, fs) at simultaneous high pressures (3.4–4.8 GPa) and high temperatures (1,148–1,448 K), to improve constraints on the density of orthopyroxene in the lunar interior. Unit-cell volumes were determined through in situ energy-dispersive synchrotron X-ray diffraction in a multi-anvil press, using MgO as a pressure marker. Our volume data were fitted to a high-temperature Birch–Murnaghan equation of state (EoS). Experimental data are reproduced accurately, with a \(\varDelta P\) standard deviation of 0.20 GPa. The resulting thermoelastic parameters of fs are: V 0 = 875.8 ± 1.4 Å3K 0 = 74.4 ± 5.3 GPa, and \(\frac{{\text d}K}{{\text d}T} = -0.032 \pm 0.005\,\hbox{GPa K}^{-1}\), assuming \({K}^{\prime}_{0} = 10 \). We also determined the thermal equation of state of a natural Fe-rich orthopyroxene from Hidra (Norway) to assess the effect of magnesium on the EoS of iron-rich orthopyroxene. Comparison between our two data sets and literature studies shows good agreement for room-temperature, room-pressure unit-cell volumes. Preliminary thermodynamic analyses of orthoferrosilite, FeSiO3, and orthopyroxene solid solutions, (Mg1−x Fe x ) SiO3, using vibrational models show that our volume measurements in pressure–temperature space are consistent with previous heat capacity and one-bar volume–temperature measurements. The isothermal bulk modulus at ambient conditions derived from our measurements is smaller than values presented in the literature. This new simultaneous high-pressure, high-temperature data are specifically useful for calculations of the orthopyroxene density in the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  • Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-Temperature and High-Pressure Crystal Chemistry, Reviews in mineralogy & geochemistry, vol 41, Mineralogical society of America and the geochemical society, pp 35–59

  • Bass JD (1995) Elasticity of minerals, glasses, and melts. In: Ahrens TJ (eds) Minerals physics and crystallography: a handbook of physical constants, AGU reference shelf series, AGU, Washington, pp 45–63

    Chapter  Google Scholar 

  • Bass JD, Weidner DJ (1984) Elasticity of single-crystal orthoferrosilite. J Geophys Res 89:4359–4371

    Article  Google Scholar 

  • Chai M, Brown JM, Slutsky LJ (1997) The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J Geophys Res 102:14779–14785

    Article  Google Scholar 

  • de Vries J (2012) Lunar evolution: a combined numerical modelling and HPT experimental study. PhD thesis, Utrecht University

  • de Vries J, van den Berg AP, van Westrenen W (2010) Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates. Earth Planet Sci Lett 292:139–147

    Article  Google Scholar 

  • Flesch LM, Li B, Liebermann RC (1998) Sound velocities of polycrystalline MgSiO3-orthopyroxene to 10 GPa at room temperature. Am Mineral 83:444–450

    Google Scholar 

  • Frisillo AL, Barsch GR (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. J Geophys Res 77:6360–6384

    Article  Google Scholar 

  • Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet Sci Lett 134:501–514

    Article  Google Scholar 

  • Hugh-Jones D (1997) Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes. Am Mineral 82:689–696

    Google Scholar 

  • Hugh-Jones DA, Angel RJ (1994) A compressional study of MgSiO3 orthoenstatite up to 8.5 GPa. Am Mineral 79:405–410

    Google Scholar 

  • Hugh-Jones DA, Angel RJ (1997) Effect of Ca2+ and Fe2+ on the equation of state of MgSiO3 orthopyroxene. J Geophys Res 102:12333–12340

    Article  Google Scholar 

  • Hugh-Jones D, Sharp T, Angel RJ, Woodland AB (1996) The transition of orthoferrosilite to high-pressure C2/c clinoferrosilite at ambient temperature. Eur J Mineral 8:1337–1345

    Google Scholar 

  • Hugh-Jones D, Chopelas A, Angel R (1997) Tetrahedral compression in (Mg, Fe)SiO3 orthopyroxenes. Phys Chem Minerals 24:301–310

    Article  Google Scholar 

  • Jackson JM, Sinogeikin SV, Bass JD (1999) Elasticity of MgSiO3 orthoenstatite. Am Mineral 84:677–680

    Google Scholar 

  • Jacobs MHG, de Jong BHWS (2005) Quantum-thermodynamic treatment of intrinsic anharmonicity; Wallaces theorem revisited. Phys Chem Minerals 32:614–626

    Article  Google Scholar 

  • Jacobs MHG, de Jong BHWS (2007) Placing constraints on phase equilibria and thermophysical properties in the system Mg-SiO2 by a thermodynamically consistent vibrational method. Geochim et Cosmochim Acta 71:3630–3655

    Article  Google Scholar 

  • Jacobs MHG, de Jong BHWS (2009) Thermodynamic mixing properties of olivine derived from lattice vibrations. Phys Chem Minerals 36:365–389

    Article  Google Scholar 

  • Kung J, Jackson I, Liebermann RC (2011) High-temperature elasticity of polycrystalline orthoenstatite (MgSiO3). Am Mineral 96:577–585

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR, pp 86–748

  • Lucey P, Korotev RL, Gillis JJ, Taylor LA, Lawrence D, Campbell BA, Elphic R, Feldman B, Hood LL, Hunten D, Mendillo M, Noble S, Papike JJ, Reedy RC, Lawson S, Prettyman T, Gasnault O, Maurice S (2006) Understanding the lunar surface and space–Moon interactions. In: Jolliff BL, Wieczorek MA, Shearer CK, Neal CR (eds) New views of the Moon, Reviews in mineralogy and geochemistry, Mineralogical Society of America and the Geochemical Society, Chantilly, pp 83–219

    Google Scholar 

  • McDade P, Wood BJ, van Westrenen W, Brooker R, Gudmundsson G, Soulard H, Najorka J, Blundy J (2002) Pressure corrections for a selection of piston-cylinder cell assemblies. Mineral Mag 66:1021–1028

    Article  Google Scholar 

  • Molin GM (1989) Crystal-chemical study of cation disordering in Al-rich and Al-poor orthopyroxenes for spinel lherzolite xenoliths. Am Mineral 74:593–598

    Google Scholar 

  • Mueller HJ, Lathe C, Schilling FR (2005) Simultaneous determination of elastic and structural properties under simulated mantle conditions using multi-anvil device MAX80. In: Chen J, Wang Y, Duffy TS, Shen G, Dobrzhinetskaya LF (eds) Advances in high pressure technology for geophysical application, Elsevier B.V., Amsterdam, pp 67–94

    Chapter  Google Scholar 

  • Nestola F, Gatta GD, Boffa Ballaran T (2006) The effect of Ca substitution on the elastic and structural behavior of orthoenstatite. Am Mineral 91:809–815

    Article  Google Scholar 

  • Nestola F, Boffa Ballaran T, Balić-Žunić T, Secco L, Dal Negro A (2008) The high-pressure behavior of an Al- and Fe-rich natural orthopyroxene. Am Mineral 93:644–652

    Article  Google Scholar 

  • Prescher C, McCammon CA, Dubrovinsky L (2012) MossA—a program for analyzing energy-domain Mőssbauer spectra from conventional and synchrotron sources. J Appl Crystallogr 45:329–331

    Article  Google Scholar 

  • Saxena SK (1996) Earth mineralogical model: Gibbs free energy minimization computation in the system MgO-FeO-SiO2. Geochim Cosmochim Acta 60:2379–2395

    Article  Google Scholar 

  • Saxena SK, Ghose S (1971) Mg2+ − Fe2+ order-disorder and the thermodynamics of the orthopyroxene crystalline solution. Am Mineral 56:532–559

    Google Scholar 

  • Shearer CK, Hess PC, Wieczorek MA, Pritchard ME, Parmentier EM, Borg LE, Longhi J, Elkins-Tanton LT, Neal CR, Antonenko I, Canup RM, Halliday AN, Grove TL, Hager BH, Lee DC, Wiechert U (2006) Thermal and magmatic evolution of the Moon. In: Jolliff BL, Wieczorek MA, Shearer CK, Neal CR (eds) New views of the Moon, Reviews in mineralogy and geochemistry, Mineralogical society of America and the geochemical society, Chantilly, pp 365–518

    Google Scholar 

  • Smyth JR (1973) An orthopyroxene structure up to 850 °C. Am Mineral 58:636–648

    Google Scholar 

  • Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the source of mare basalts: Combined equillibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56:3809–3823

    Article  Google Scholar 

  • Speziale S, Zha CS, Duffy TS, Hemley RJ, Mao H (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure–volume–temperature equation of state. J Geophys Res 106:515–528

    Article  Google Scholar 

  • Stimpfl M, Ganguly J, Molin G (1999) Fe2+-Mg order-disorder in orthopyroxene: equillibrium fractionation between the octahedral sites and thermodynamic analysis. Contrib Mineral Petrol 136:297–309

    Article  Google Scholar 

  • Sueno S, Cameron M, Prewitt CT (1976) Orthoferrosilite: high-temperature crystal chemistry. Am Mineral 61:38–53

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  Google Scholar 

  • van Kan Parker M (2011) Physical and chemical properties of lunar magma. PhD thesis, VU University Amsterdam

  • van Sijl J (2011) Trace elements in high pressure and temperature fluids in subduction zones. PhD thesis, VU University Amsterdam

  • Webb SL, Jackson I (1993) The pressure dependence of the elastic moduli of single-crystal orthopyroxene (Mg0.8Fe0.2)SiO 3. Eur J Mineral 5:1111–1119

    Google Scholar 

  • Weidner DJ, Wang H, Ito J (1978) Elasticity of orthoenstatite. Phys Earth Planet Int 17:7–13

    Article  Google Scholar 

  • Woodland AB, Angel RJ (1997) Reversal of the orthoferrosilite-high-P clinoferrosilite transition; a phase diagram for FeSiO 3 and implications for the mineralogy of the Earth’s upper mantle. Eur J Mineral 9:245–254

    Google Scholar 

  • Yang H, Ghose S (1994) Thermal expansion, Debye temperature and Grűneisen parameter of synthetic (Fe, Mg)SiO3 orthopyroxenes. Phys Chem Minerals 20:575–586

    Article  Google Scholar 

  • Zhao Y, Schiferl D, Shankland TJ (1995) A high P–T single-crystal X-ray diffraction study of thermoelasticity of MgSiO3 orthoenstatite. Phys Chem Minerals 22:393–398

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Peter Brack at ETH Zűrich for kindly donating the natural sample. Furthermore, we would like to thank Josepha Kempl and Nachiketa Rai for their assistence in the preparation of the synthetic sample material, and Wynanda Koot for preparing run products for electron microprobe analysis and analysis with Mőssbauer spectroscopy. We also thank three anonymous reviewers for their critical comments. This work was funded through a European Science Foundation EURYI award to Wim van Westrenen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. de Vries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, J., Jacobs, M.H.G., van den Berg, A.P. et al. Thermal equation of state of synthetic orthoferrosilite at lunar pressures and temperatures. Phys Chem Minerals 40, 691–703 (2013). https://doi.org/10.1007/s00269-013-0605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0605-5

Keywords

Navigation