Skip to main content
Log in

A single-crystal neutron and X-ray diffraction study of pezzottaite, Cs(Be2Li)Al2Si6O18

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The chemical composition and the crystal structure of pezzottaite [ideal composition Cs(Be2Li)Al2Si6O18; space group: \({\it{R}} \overline{\text{3}} \) c, a = 15.9615(6) Å, c = 27.8568(9) Å] from the type locality in Ambatovita (central Madagascar) were investigated by electron microprobe analysis in wavelength dispersive mode, thermo-gravimetric analysis, Fourier-transform infrared spectroscopy, single-crystal X-ray (at 298 K) and neutron (at 2.3 K) diffraction. The average chemical formula of the sample of pezzottaite resulted Cs1,Cs2(Cs0.565Rb0.027K0.017)Σ0.600 Na1,Na2(Na0.101Ca0.024)Σ0.125Be2.078Li0.922 Al1,Al2(Mg0.002Mn0.002Fe0.003Al1.978)Σ1.985 Si1,Si2,Si3(Al0.056Si5.944)Σ6O18·0.27H2O. The (unpolarized) IR spectrum over the region 3,800–600 cm−1 was collected and a comparison with the absorption bands found in beryl carried out. In particular, two-weak absorption bands ascribable to the fundamental H2O stretching vibrations (i.e. 3,591 and 3,545 cm−1) were observed, despite the mineral being nominally anhydrous. The X-ray and neutron structure refinements showed: (a) a non-significant presence of aluminium, beryllium or lithium at the Si1, Si2 and Si3 sites, (b) the absence (at a significant level) of lithium at the octahedral Al1, Al2 and Al3 sites and (c) a partial lithium/beryllium disordering between tetrahedral Be and Li sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agilent Technologies (2012) Xcalibur CCD system, CrysAlis Software system

  • Aines RD, Rossman GR (1984) The high-temperature behaviour of water and carbon dioxide in cordierite and beryl. Am Mineral 69:319–327

    Google Scholar 

  • Armbruster T, Libowitzky E, Diamond L, Auernhammer M, Bauerhansl P, Hoffmann C, Irran E, Kurka A, Rosenstingl H (1995) Crystal chemistry and optics of bazzite from Furkabasistunnel (Switzerland). Min Petrol 52:113–126

    Article  Google Scholar 

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF, and phi(rho Z) procedures. In: Newbury DE (ed) Microbeam analysis. San Francisco Press, USA, pp 239–246

    Google Scholar 

  • Aurisicchio C, Fioravanti G, Grubessi O, Zanazzi PF (1988) Reappraisal of the crystal chemistry of beryl. Am Mineral 73:826–837

    Google Scholar 

  • Aurisicchio C, Grubessi O, Zecchini P (1994) Infrared spectroscopy and crystal chemistry of the beryl group. Can Min 32:55–68

    Google Scholar 

  • Becker PJ, Coppens P (1974) Extinction within the limit of validity of the Darwin transfer equations. I. General formalism for primary and secondary extinction and their applications to spherical crystals. Acta Cryst A30:129–147

    Google Scholar 

  • Černý P (2002) Mineralogy of beryllium in granitic pegmatites. In Grew ES (ed) Beryllium: mineralogy, petrology, and geochemistry. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington DC, vol 50, pp 405–444

  • Černý P, Anderson AJ, Tomascak PB, Chapman R (2003) Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe. Can Min 41:1003–1011

    Article  Google Scholar 

  • Charoy B, De Donato P, Barres O, Pinto-Coelho C (1996) Channel occupancy in alkali-poor beryl from Serra Branca (Goias, Brasil): spectroscopic characterization. Am Mineral 81:395–403

    Google Scholar 

  • Della Ventura G, Rossi P, Parodi GC, Mottana A, Raudsepp M, Prencipe M (2000) Stoppaniite, (Fe,Al,Mg)4(Be6Si12O36) • (H2O)2(Na,□) a new mineral of the beryl group from Latium (Italy). Eur J Mineral 12:121–127

    Google Scholar 

  • Downs RT (2000) Analysis of harmonic displacement factors. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, vol 41. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Washington, USA, pp 61–117

    Google Scholar 

  • Downs RT, Gibbs GV, Bartelmehs KL, Boisen Jr MB (1992) Variations of bond lengths and volumes of silicate tetrahedra with temperature. Am Mineral 77:751–757

    Google Scholar 

  • Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838

    Article  Google Scholar 

  • Ferraris G, Prencipe M, Rossi P (1998) Stoppaniite, a new member of the beryl group: crystal structure and crystal-chemical implication. Eur J Mineral 10:491–496

    Google Scholar 

  • Fukuda J, Shinoda K (2011) Water molecules in beryl and cordierite: high-temperature vibrational behavior, dehydration, and coordination to cations. Phys Chem Minerals 38:469–481

    Article  Google Scholar 

  • Gatta GD, Nestola F, Bromiley GD, Mattauch S (2006) The real topological configuration of the extra-framework content in alkali-poor beryl: a multi-methodological study. Am Mineral 91:29–34

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Fisch M, Kadiyski M, Armbruster T (2008) Stability at high-pressure, elastic behaviour and pressure-induced structural evolution of CsAlSi5O12, a potential nuclear waste disposal phase. Phys Chem Minerals 35:521–533

    Article  Google Scholar 

  • Gatta GD, Rinaldi R, McIntyre GJ, Nénert G, Bellatreccia F, Guastoni A, Della Ventura G (2009a) On the crystal structure and crystal chemistry of pollucite, (Cs, Na)16Al16Si32O96·nH2O: a natural microporous material of interest in nuclear technology. Am Mineral 94:1560–1568

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Boffa Ballaran T, Sanchez Valle C, Pavese A (2009b) Elastic behaviour and phase-stability of pollucite, a potential host for nuclear waste. Am Mineral 94:1137–1143

    Article  Google Scholar 

  • Gatta GD, Vignola P, McIntyre GJ, Diella V (2010) On the crystal chemistry of londonite [(Cs,K,Rb)Al4Be5B11O28]: a single-crystal neutron diffraction study at 300 and 20 K. Am Mineral 95:1467–1472

    Article  Google Scholar 

  • Hawthorne FC, Cooper M, Simmons WB Jr, Laurs BM, Armbruster Th, Rossman GR, Peretti A, Günter D, Grobéty B, Falster AU (2004) Pezzottaite Cs(Be2Li)Al2Si6O18: a spectacular new beryl-group mineral from the sakavalana pegmatite, Fianarantsoa Province, Madagascar. Mineral Rec 35:369–378

    Google Scholar 

  • Hofmeister AM, Hoering TC, Virgo D (1987) Vibrational spectroscopy of beryllium aluminosilicates: heat capacity calculations from band assignments. Phys Chem Mineral 14:205–224

    Article  Google Scholar 

  • Larson AC (1970) Secondary-extinction corrections. In: Ahmed FR, Hall SR, Huber CP (eds) Crystallographic computing. Munksgaard Publisher, Copenhagen, Denmark, pp 291–294

  • Laurs BM, Simmons WB, Rossman GR, Quinn EP, McClure SF, Pereiti A, Armbruster Th, Hawthorne FC, Falster AU, Günther D, Cooper MA, Grobéty B (2003) Pezzottaite from Ambatovita, Madagascar: a new gem mineral. Gems Gemol 39:284–301

    Article  Google Scholar 

  • Liu SI, Peng MS (2005) A new gem mineral. The vibrational spectroscopic characterization of pezzottaite. Acta Mineral Sin 25:60–64

    Google Scholar 

  • Petricek V, Dusek M, Palatinus L (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic

  • Prencipe M, Noel Y, Civalleri B, Roetti C, Dovesi R (2006) Quantum-mechanical calculation of the vibrational spectrum of beryl (Al4Be6Si12O36) at the Γ point. Phys Chem Minerals 33:519–532

    Article  Google Scholar 

  • Sears VF (1986) Neutron scattering lengths and cross-sections. In: Sköld K, Price DL (eds) Neutron scattering, methods of experimental physics, vol 23A. Academic Press, New York, pp 521–550

    Chapter  Google Scholar 

  • Sheldrick GM (1997) SHELX-97. Programs for crystal structure determination and refinement. University of Göttingen, Germany

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Google Scholar 

  • Simmons WB, Falster AU, McClure SF, Quinn EP, Rossman GR, Hawthorne FC (2003) Gem news international: a new saturated purplish pink Cs-“beryl” from Madagascar: preliminary analyses. Gems Gemol 39:50–54

    Google Scholar 

  • Wilson AJC, Prince E (eds) (1999) International tables for X-ray crystallography, Volume C: mathematical, physical and chemical tables, 2nd edn. Kluwer Academic, Dordrecht, NL

  • Wood DL, Nassau K (1967) Infrared spectra of foreign molecules in beryl. J Chem Phys 42:2220–2228

    Article  Google Scholar 

  • Wood DL, Nassau K (1968) The characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am Mineral 53:777–800

    Google Scholar 

  • Yakubovich OV, Pekov IV, Steele IM, Massa W, Chukanov NV (2009) Alkali metals in beryl and their role in the formation of derivative structural motifs: comparative crystal chemistry of vorobyevite and pezzottaite. Crystallogr Rep 54:399–412

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), München, Germany, for the allocation of neutron beam time. Dr. F. Pezzotta is acknowledged for providing the sample of pezzottaite here investigated. S. Mills, an anonymous reviewer and the Editor, M. Rieder, are thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Diego Gatta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatta, G.D., Adamo, I., Meven, M. et al. A single-crystal neutron and X-ray diffraction study of pezzottaite, Cs(Be2Li)Al2Si6O18 . Phys Chem Minerals 39, 829–840 (2012). https://doi.org/10.1007/s00269-012-0539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0539-3

Keywords

Navigation