Skip to main content

Advertisement

Log in

Compression of Na0.4Mg0.6Al1.6Si0.4O4 NAL and Ca-ferrite-type phases

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Compression behaviors of two Al-rich phases in the lower mantle, hexagonal new aluminum-rich (NAL) phase and its high-pressure polymorph Ca-ferrite-type (CF) phase, were examined for identical Na0.4Mg0.6Al1.6Si0.4O4 (40 % NaAlSiO4–60 % MgAl2O4) composition. The volumes of the NAL and CF phases were obtained at room temperature up to 31 and 134 GPa, respectively, by a combination of laser-annealed diamond-anvil cell techniques and synchrotron X-ray diffraction measurements. Fitting of the third-order Birch–Murnaghan equation of state to such pressure–volume data yields bulk modulus K 0 = 199(6) GPa at 1 bar and its pressure derivative K 0′ = 5.0(6) for the NAL phase and K 0 = 169(5) GPa and K 0′ = 6.3(3) for the CF phase. These results indicate that the bulk modulus increases from 397 to 407 GPa across the phase transition from the NAL to CF phase at 43 GPa, where the NAL phase completely transforms into the CF phase on Na0.4Mg0.6Al1.6Si0.4O4. Density also increases by 2.1 % across the phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson OL, Isaak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543

    Article  Google Scholar 

  • Dubrovinsky LS, Dubrovinskaia NA, Prokopenko VB, Le Bihan T (2002) Equation of state and crystal structure of NaAlSiO4 with calcium-ferrite type structure in the conditions of the lower mantle. High Press Res 22:495–499

    Article  Google Scholar 

  • Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consist pressure scale. Proc Natl Acad Sci USA 104:9182–9186

    Article  Google Scholar 

  • Funamori N, Jeanloz R, Nguyen JH, Kavner A, Cadwell WA (1998) High-pressure transformation in MgAl2O4. J Geophys Res 103:20813–20818

    Article  Google Scholar 

  • Funamori N, Jeanloz R, Miyajima N, Fujino K (2000) Mineral assemblages of basalt in the lower mantle. J Geophys Res 105:26037–26043. doi:10.1029/2000JB900252

    Article  Google Scholar 

  • Gasparik T, Tripathi A, Parise J (2000) Structure of a new Al-rich phase, [K, Na]0.9[Mg, Fe]2[Mg, Fe, Al, Si]6O12. Am Mineral 85:613–618

    Google Scholar 

  • Guignot N, Andrault D (2004) Equations of state of Na-K-Al host phase and implications for MORB density in the lower mantle. Phys Earth Planet Inter 143–144:107–128

    Article  Google Scholar 

  • Hammersley AP (1998) Fit2d: V9.129 reference manual v3.1. Inter Rep ESRF98HA01, ESRF, Grenoble

  • Hirose K, Fei Y (2002) Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim Cosmochim Acta 66:2099–2108

    Article  Google Scholar 

  • Hirose K, Fei Y, Ma Y, Mao HK (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56

    Article  Google Scholar 

  • Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 237:239–251

    Article  Google Scholar 

  • Imada S, Hirose K, Ohishi Y (2011) Stabilities of NAL and Ca-ferrite-type phases on the join NaAlSiO4-MgAl2O4 at high pressure. Phys Chem Miner 38:557–560

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1993) Phase transformations in subducted oceanic crust and buoyancy relationships depths of 600–800 km in the mantle. Earth Planet Sci Lett 117:101–110

    Article  Google Scholar 

  • Irifune T, Naka H, Sanehira T, Inoue T, Funakoshi K (2002) In situ X-ray observations of phase transitions in MgAl2O4 spinel to 40 GPa using multianvil apparatus with sintered diamond anvils. Phys Chem Miner 29:645–654

    Article  Google Scholar 

  • Kesson SE, Fitz GJD, Shelley JMG (1994) Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. Nature 372:767–769

    Article  Google Scholar 

  • Kojitani H, Iwabuchi T, Kobayashi M, Miura H, Akaogi M (2011) Structure refinement of high-pressure hexagonal aluminous phases K1.00Mg2.00Al4.80Si1.15O12 and Na1.04Mg1.88Al4.64Si1.32O12. Am Mineral 96:1248–1253

    Article  Google Scholar 

  • Miura H, Hamada Y, Suzuki T, Akaogi M, Miyajima N, Fujino K (2000) Crystal structure of CaMg2Al6O12, a new Al-rich high pressure form. Am Minaral 85:1799–1803

    Google Scholar 

  • Miyajima N, Fujino K, Funamori N, Kondo T, Yagi T (1999) Garnet-perovskite transformation under conditions of the earth’s lower mantle: an analytical transmission electron microscopy study. Phys Earth Planet Inter 116:117–131

    Article  Google Scholar 

  • Miyajima N, Yagi T, Hirose K, Kondo T, Fujino K, Miura H (2001) Potential host phase of aluminum and potassium in the Earth’s lower mantle. Am Mineral 86:740–746

    Google Scholar 

  • Oguri K, Funamori N, Uchida T, Miyajima N, Yagi T, Fujino K (2000) Post-garnet transition in a natural pyrope: a multi-anvil study based on in situ X-ray diffraction and transmission electron microscopy. Phys Earth Planet Inter 122:175–186

    Article  Google Scholar 

  • Ohishi Y, Hirao N, Sata N, Hirose K, Tanaka M (2008) Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8. High Press Res 28:163–173

    Article  Google Scholar 

  • Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190:57–63

    Article  Google Scholar 

  • Ono S, Hirose K, Isshiki M, Mibe K, Saito Y (2002a) Equation of state of hexagonal aluminous phase in basaltic composition to 63 GPa at 300 K. Phys Chem Miner 29:527–531

    Article  Google Scholar 

  • Ono S, Hirose K, Kikegawa T, Saito Y (2002b) The compressibility of a natural composition calcium ferrite aluminous phase to 70 GPa. Phys Earth Planet Inter 131:311–318

    Article  Google Scholar 

  • Ono A, Akaogi M, Kojitani H, Yamashita K, Kobayashi M (2009) High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium-ferrite phase in the systems NaAlSiO4–MgAl2O4 and CaAl2O4–MgAl2O4. Phys Earth Planet Inter 174:39–49

    Article  Google Scholar 

  • Perrillat JP, Ricolleau A, Daniel I, Fiquet G, Mezouar M, Guignot N, Cardon H (2006) Phase transformations of subducted basaltic crust in the upmost lower mantle. Phys Earth Planet Inter 157:139–149

    Article  Google Scholar 

  • Ricolleau A, Fiquet G, Addad A, Menguy N, Vanni C, Perrillat JP, Daniel I, Cardon H, Guignot N (2008) Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. Am Mineral 93:144–153

    Article  Google Scholar 

  • Ricolleau A, Perrillat JP, Fiquet G, Daniel I, Matas J, Addad A, Menguy N, Cardon H, Mezouar M, Guignot N (2010) Phase relations and equation of state of a natural MORB: implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J Geophys Res 115:B08202. doi:10.1029/2009JB006709

    Article  Google Scholar 

  • Shim SH, Duffy TS, Takemura K (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet Sci Lett 203:729–739

    Article  Google Scholar 

  • Shinmei T, Sanehira T, Yamazaki D, Inoue T, Irifune T, Funakoshi K, Nozawa A (2005) High-temperature and high-pressure equation of state for the hexagonal phase in the system NaAlSiO4–MgAl2O4. Phys Chem Miner 32:594–602

    Article  Google Scholar 

  • Vanpeteghem CB, Ohtani E, Litasov K, Kondo T, Watanuki T, Isshiki M, Takemura K (2003) The compressibility of hexagonal Al-rich NAL phase: similarities and differences with calcium ferrite-type (CF) phase with implications for the lower mantle. Phys Earth Planet Inter 138:223–230

    Article  Google Scholar 

  • Yutani M, Yagi T, Yusa H, Irifune T (1997) Compressibility of calcium ferrite-type MgAl2O4. Phys Chem Miner 24:340–344

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Tateno, H. Ozawa, and E. Sugimura for their support in synchrotron experiments. Comments from M. Akaogi and an anonymous referee were helpful to improve the manuscript. XRD measurements were performed at SPring-8 (proposal no. 2010B0087 and 2011A0087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saori Imada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imada, S., Hirose, K., Komabayashi, T. et al. Compression of Na0.4Mg0.6Al1.6Si0.4O4 NAL and Ca-ferrite-type phases. Phys Chem Minerals 39, 525–530 (2012). https://doi.org/10.1007/s00269-012-0508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0508-x

Keywords

Navigation