Skip to main content

Advertisement

Log in

Equation of state of a new calcium magnesium silicate compound with the composition Ca3MgSi2O8 at pressures up to 23 GPa and ambient T

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Interaction between the Ca-rich and Ca-poor (or Mg-rich) domains in the mantle may lead to formation of some special calcium magnesium silicates (CMS), as indicated by the unusual mineral inclusion with the chemical formula Ca2.85Mg0.96Fe0.11Si2.04O8 enclosed in a super-deep diamond from Brazil. The equations of state (EoS) of these CMS compounds are thus important. With a diamond-anvil cell, here we performed in situ synchrotron X-ray diffraction experiments at high P (up to ~ 23 GPa) and ambient T to constrain the EoS of a new CMS compound with the composition Ca3MgSi2O8 and the space group C2/c. The obtained PV data were fitted to the third-order Birch–Murnaghan EoS, yielding an isothermal bulk modulus \({K}_{T}\) = 108(2) GPa, its first pressure derivative \({K}_{T}^{^{\prime}}\) = 4.0(3) and room-P volume V0 = 658.0(4) Å3. If \({K}_{T}^{^{\prime}}\) is fixed as 4, then \({K}_{T}\) = 108(1) GPa and V0 = 658.0(3) Å3. In addition, no phase transition has been observed for this new CMS compound in the investigated P interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500

    Article  Google Scholar 

  • Anderson O, Nafe J (1965) The bulk modulus-volume relationship for oxide compounds and related geophysical problems. J Geophys Res 70:3951–3963

    Article  Google Scholar 

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-Temperature and High-Pressure Crystal Chemistry. Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America, pp 35–60

    Chapter  Google Scholar 

  • Bao X, Zhang Y, Zhang Z, Zhang L, Liu X, Dong J, Liu X (2017) A new Ca3MgSi2O8 compound and some of its thermodynamic properties. J Solid State Chem 255:145–149

    Article  Google Scholar 

  • Bao X, He M, Zhang Z, Liu X (2021) Crystal structure and some thermodynamic properties of Ca7MgSi4O16-bredigite. Crystals 11:14

    Article  Google Scholar 

  • Bass JD, Liebermann RC, Weidner DJ, Finch SJ (1981) Elastic properties from acoustic and volume compression experiments. Phys Earth Planet Inter 25:140–158

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924

    Article  Google Scholar 

  • Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300K. J Geophys Res 83:1257–1268

    Article  Google Scholar 

  • Brenker FE, Vincze L, Vekemans B, Nasdala L, Stachel T, Vollmer C, Kersten M, Somogyi A, Adams F, Joswig W, Harris JW (2005) Detection of a Ca-rich litholgy in the Earth’s deep (>300 km) convecting mantle. Earth Planet Sci Lett 236:579–587

    Article  Google Scholar 

  • Brenker FE, Nestola F, Brenker L, Peruzzo L, Harris JW (2021) Origin, properties, and structure of breyite: the second abundant mineral inclusion in super-deep diamonds. Am Mineral 106:38–43

    Article  Google Scholar 

  • Brousse C, Newton RC, Kleppa OJ (1984) Enthalpy of formation of forsterite, enstatite, akermanite, monticellite and merwinite at 1073 K determined by alkali borate solution calorimetry. Geochim Cosmochim Acta 48:1081–1088

    Article  Google Scholar 

  • Dewaele A, Datchi F, Loubeyre P, Mezouar M (2008) High pressure-high temperature equations of state of neon and diamond. Phys Rev B 77:094106

    Article  Google Scholar 

  • Gavrilenko P, BoffaBallaran T, Keppler H (2010) The effect of Al and water on the compressibility of diopside. Am Mineral 95:608–616

    Article  Google Scholar 

  • Hammersley A, Svensson S, Hanfland M, Fitch A, Hausermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Pressure Res 14:235–248

    Article  Google Scholar 

  • Heinz DL, Jeanolz R (1984) The equation of state of the gold calibration standard. J Appl Phys 55:885–893

    Article  Google Scholar 

  • Isaak DG, Ohno I, Lee PC (2006) The elastic constants of monoclinic single-crystal chrome-diopside to 1300 K. Phys Chem Mineral 32:691–699

    Article  Google Scholar 

  • Jambor JL, Kovalenker VA, Roberts AC (2000) New mineral names. Am Mineral 85:873–877

    Google Scholar 

  • Joswig W, Stachel TH, Harris JW, Baur WH, Brey G (1999) New Ca-silicate inclusions in diamonds-tracer from the lower mantle. Earth Planet Sci Lett 173:1–6

    Article  Google Scholar 

  • Kagi H, Odake S, Fukura S, Zedgenizov DA (2009) Raman spectroscopic estimation of depth of diamond origin: technical developments and the application. Russ Geol Geophys 50:1183–1187

    Article  Google Scholar 

  • Klotz S, Chervin J, Munsch P, Lemarchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413

    Article  Google Scholar 

  • Levien L, Weidner DJ, Prewitt CT (1979) Elasticity of diopside. Phys Chem Mineral 4:105–113

    Article  Google Scholar 

  • Li B, Neuville DR (2010) Elasticity of diopside to 8GPa and 1073K and implications for the upper mantle. Phys Earth Planet Inter 183:398–403

    Article  Google Scholar 

  • Li Z, Chan S-K, Ghose S (1990) Elastic properties of the incommensurate phase of akermanite, Ca2MgSi2O7. Phys Chem Mineral 17:462–466

    Article  Google Scholar 

  • Liu L-G (1979) High pressure phase transformations in the joins Mg2SiO4-Ca2SiO4 and MgO-CaSiO3. Contrib Mineral Petrol 69:245–257

    Article  Google Scholar 

  • Liu X, Fleet ME (2009) Phase relations of nahcolite and trona at moderate P-T conditions. J Mineral Petrol Sci 104:25–36

    Article  Google Scholar 

  • Liu X, Xiong Z, Chang L, He Q, Wang F, Shieh SR, Wu C, Li B, Zhang L (2016) Anhydrous ringwoodites in the mantle transition zone: their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sci 1:28–47

    Article  Google Scholar 

  • Mao HK, Bell PM, Shaner JW (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of ruby R1 fluorescence pressure gauge for 0.006 to 1 Mbar. J Appl Phys 49:3276–3283

    Article  Google Scholar 

  • McConnell JDC, McCammon CA, Angel RJ, Seifert F (2000) The nature of the incommensurate structure in akermanite, Ca2MgSi2O7, and the character of its transformation from the normal structure. Z Kristallogr 215:669–677

    Article  Google Scholar 

  • Merlini M, Gemmi M, Hanfland M, Crichton W (2009) High-pressure behavior of Akermanite and gehlenite and phase stability of the normal structure in melilites. Am Mineral 94:704–709

    Article  Google Scholar 

  • Moore PB, Araki T (1972) Atomic arrangement of merwinite, Ca3Mg(SiO4)2, an unusual dense-packed structure of geophysical interest. Am Mineral 57:1355–1374

    Google Scholar 

  • Nasdala L, Brenker FE, Glinnemann J, Hofmeister W, Gasparik T, Harris JW, Stachel T, Reese I (2003) Spectroscopic 2D-tomography: residual pressure and strain around mineral inclusions in diamonds. Eur J Mineral 15:931–935

    Article  Google Scholar 

  • Neuvonen KJ (1952) Heat of formation of merwinite and monticellite. Am J Sci Bowen 2:373–380

    Google Scholar 

  • Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224

    Article  Google Scholar 

  • Peercy MS, Bass JD (1990) Elasticity of monticellite. Phys Chem Mineral 17:431–437

    Article  Google Scholar 

  • Sang L, Bass JD (2014) Single-crystal elasticity of diopside to 14 GPa by Brillouin scattering. Phys Earth Planet Inter 228:75–79

    Article  Google Scholar 

  • Sharp ZD, Essene EJ, Anovitz LM, Metz GW, Westrum EFJR, Hemingway BS, Valley JW (1986) The heat capacity of a natural monticellite and phase equilibria in the system CaO-MgO-SiO2-CO2. Geochim Cosmochim Acta 50:1475–1484

    Article  Google Scholar 

  • Sharp ZD, Hazen RW, Finger LW (1987) High-pressure crystal chemistry of monticellite, CaMgSiO4. Am Mineral 72:748–755

    Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Stachel T, Harris JW, Brey GP, Joswig W (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib Mineral Petrol 140:16–27

    Article  Google Scholar 

  • Thompson RM, Downs RT (2008) The crystal structure of diopside at pressure to 10 GPa. Am Mineral 93:177–186

    Article  Google Scholar 

  • Tribaudino M, Prencipe M, Bruno M, Levy D (2000) High-pressure behaviour of Ca-rich C2/c clinopyroxenes along the join diopside-enstatite (CaMgSi2O6-Mg2Si2O6). Phys Chem Mineral 27:656–664

    Article  Google Scholar 

  • Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57

    Article  Google Scholar 

  • Xiong Z, Liu X, Shieh SR, Wang S, Chang L, Tang J, Hong X, Zhang Z, Wang H (2016) Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by high T/P experiment and/or theoretical simulation. Am Mineral 101:277–288

    Article  Google Scholar 

  • Xiong Z (2015) High temperature and high pressure study about the Ca-rich silicates in the system Ca2SiO4-Ca3MgSi2O8. PhD thesis of Peking University.

  • Yang H, Hazen RM, Downs RT, Finger LW (1997) Structural change associated with the incommensurate-normal phase transition in akermanite, Ca2MgSi2O7, at high pressure. Phys Chem Mineral 24:510–519

    Article  Google Scholar 

  • Zedgenizov DA, Shatskiy A, Ragozin AL, Kagi H, Shatsky VS (2014) Merwinite in diamond from São Luiz, Brazil: a new mineral of the Ca-rich mantle environment. Am Mineral 99:547–550

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Hafner SS, Kutoglu A (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. Am Mineral 82:245–258

    Article  Google Scholar 

  • Zhao Y, Von Dreele RB, Zhang JZ, Weidner DJ (1998) Thermoelastic equation of state of monoclinic pyroxene: CaMgSi2O6 diopside. Rev High Pressure Sci Technol 7:25–27

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Zhaohui Dong, Wen Deng, Yichuan Wang and Zedong Shen for their help in conducting the compression experiments. This study was financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB42000000) and by the Program of the National Mineral Rock and Fossil Specimens Resource Center from MOST, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Z., Bao, X., Tan, D. et al. Equation of state of a new calcium magnesium silicate compound with the composition Ca3MgSi2O8 at pressures up to 23 GPa and ambient T. Phys Chem Minerals 49, 2 (2022). https://doi.org/10.1007/s00269-021-01175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-021-01175-1

Keywords

Navigation