Skip to main content

Advertisement

Log in

Crystal-structure properties and the molecular nature of hydrostatically compressed realgar

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The structure of realgar, As4S4, and its evolution with pressure have been investigated employing in situ X-ray diffraction, optical absorption and vibrational spectroscopy on single-crystal samples in diamond-anvil cells. Compression under true hydrostatic conditions up to 5.40 GPa reveals equation-of-state parameters of V 0 = 799.4(2.4) Å3 and K 0 = 10.5(0.4) GPa with \(K_0^\prime\) = 8.7. The remarkably high compressibility can be attributed to a denser packing of the As4S4 molecules with shortening of the intermolecular bonds of up to 12 %, while the As4S4 molecules remain intact showing rigid-unit behaviour. From ambient pressure to 4.5 GPa, Raman spectra exhibit a strong blue shift of the Raman bands of the lattice-phonon regime of 24 cm–1, whereas frequencies from intramolecular As-S stretching modes show negligible or no shifts at all. On pressurisation, realgar shows a continuous and reversible colour change from bright orange over deep red to black. Optical absorption spectroscopy shows a shift of the absorption edge from 2.30 to 1.81 eV up to 4.5 GPa, and DFT calculations show a corresponding reduction in the band gap. Synchrotron-based measurements on polycrystalline samples up to 45.5 GPa are indexed according to the monoclinic structure of realgar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agilent Technologies (2001) CrysAlisPro Software system 1.171.35.11

  • Alkauskas A, Pasquarello A (2007) Alignment of hydrogen-related defect levels at the Si-SiO2 interface. Physica B Condens Matter 401:546–549

    Article  Google Scholar 

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-pressure, high-temperature crystal chemistry. Reviews in Mineralogy and Geochemistry. The Mineralogical Society of America, Washington, pp 35–87

    Google Scholar 

  • Angel RJ (2004) Absorption corrections for diamond-anvil pressure cells implemented in the software package—Absorb6.0. J Appl Crystallogr 37:486–492

    Article  Google Scholar 

  • Balic-Zunic T, Vickovic I (1996) IVTON—program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. J Appl Crystallogr 29:305–306

    Article  Google Scholar 

  • Bindi L, Bonazzi P (2007) Light-induced alteration of arsenic sulfides: a new product with an orthorhombic crystal structure. Amer Min 92:617–620

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824

    Article  Google Scholar 

  • Bonazzi P, Bindi L (2008) A crystallographic review of arsenic sulfides: effects of chemical variations and changes induced by exposure to light. Z Kristallogr 223:132–147

    Article  Google Scholar 

  • Bonazzi P, Menchetti S, Pratesi G, Muniz-Miranda M, Sbrana G (1996) Light-induced variations in realgar and beta-As4S4: X-ray diffraction and Raman studies. Am Miner 81:874–880

    Google Scholar 

  • Bonazzi P, Bindi L, Pratesi G, Menchetti S (2006) Light-induced changes in molecular arsenic sulfides: state of the art and new evidence by single-crystal X-ray diffraction. Am Miner 91:1323–1330

    Article  Google Scholar 

  • Bonazzi P, Bindi L, Muniz-Miranda M, Chelazzi L, Rodl T, Pfitzner A (2011) Light-induced molecular change in HgI2·As4S4: evidence by single-crystal X-ray diffraction and Raman spectroscopy. Am Miner 96:646–653

    Article  Google Scholar 

  • Brazhkin VV, Gavrilyuk AG, Lyapin AG, Timofeev YA, Katayama Y, Kohara S (2007) AsS: bulk inorganic molecular-based chalcogenide glass. Appl Phys Lett 91:031912

    Article  Google Scholar 

  • Brazhkin VV, Katayama Y, Kondrin MV, Hattori T, Lyapin AG, Saitoh H (2008) AsS melt under pressure: one substance, three liquids. Phys Rev Lett 100:145701

    Article  Google Scholar 

  • Brazhkin VV, Bolotina NB, Dyuzheva TI, Gavriliuk AG, Lyapin AG, Popova SV, Samulski S (2011a) AsS layered-structure compound: new kind of covalent crystals. Cryst Eng Comm 13:2599–2603

    Google Scholar 

  • Brazhkin VV, Katayama Y, Kanzaki M, Kondrin MV, Lyapin AG (2011b) Pressure-induced structural transformations and the anomalous behavior of the viscosity in network chalcogenide and oxide melts. JETP Lett 94:161–170

    Article  Google Scholar 

  • Chattopadhyay T, Werner A, von Schnering HG (1982) Thermal-expansion and compressibility of beta-As4S4. J Phys Chem Solids 43:919–923

    Article  Google Scholar 

  • Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Kristallogr 220:571–573

    Article  Google Scholar 

  • Durand P, Barthelat JC (1975) Theoretical method to determine atomic pseudopotentials for electronic-structure calculations of molecules and solids. Theor Chim Acta 38:283–302

    Article  Google Scholar 

  • Frontera C, Rodriguez-Carvajal J (2004) FULLPROF as a new tool for flipping ratio analysis: further improvements. Physica A Condens Matter 350(Suppl. 1):E731–E733

    Article  Google Scholar 

  • Furthmüller J, Hahn PH, Fuchs F, Bechstedt F (2007) Reply to “Comment on ‘band structures and optical spectra of InN polymorphs: influence of quasiparticle and excitonic effects’”. Phys Rev 71:809–824

    Google Scholar 

  • Hall HT (1966) The system Ag-Sb-S, Ag-As-S, and Ag-Bi-S: phase relations and mineralogical significance. In: PhD thesis, Brown University, Providence, Rhode Island

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:235–248

    Article  Google Scholar 

  • Hehre WJ, Radom DJL, PvR Schleyer, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  • Kolobov AV (2003) Photo-induced metastability in amorphous semiconductors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Kurik MV (1971) Urbach rule. Phys Status Solidi A 8:9–45

    Article  Google Scholar 

  • Kutoglu A (1976) Preparation and crystal-structure of a new isomeric form of As4S4. Z Anorg Allg Chem 419:176–184

    Article  Google Scholar 

  • Lundegaard LF, Makovicky E, Boffa-Ballaran T, Balic-Zunic T (2005a) Crystal structure and cation lone pair activity of Bi2S3 between 0 and 10 GPa. Phys Chem Miner 32:578–584

    Article  Google Scholar 

  • Lundegaard LF, Miletich R, Balic-Zunic T, Makovicky E (2005b) Equation of state and crystal structure of Sb2S3 between 0 and 10 GPa. Phys Chem Miner 30:463–468

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J Geophys Res Solid Earth Planets 91:4673–4676

    Article  Google Scholar 

  • Miletich R, Reifler H, Kunz M (1999) The “ETH” diamond-anvil cell design for single-crystal diffraction at non-ambient conditions. Acta Crystallogr. A55: Abstr P08.CC.001

  • Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High-pressure, high-temperature crystal chemistry. Reviews in Mineralogy and Geochemistry. The Mineralogical Society of America, Washington, pp 445–519

    Google Scholar 

  • Mullen DJE, Nowacki W (1972) Refinement of crystal structures of realgar, AsS, and orpiment, As2S3. Z Kristallogr 136:48–65

    Article  Google Scholar 

  • Nasdala L, Miletich R, Ruschel K, Váczi T (2008) Raman study of radiation-damaged zircon under hydrostatic compression. Phys Chem Miner 35:597–602

    Article  Google Scholar 

  • Ouazzani T, Lichanot A, Pisani C, Roetti C (1993) Relaxation and electronic structure of surfaces in lithium sulfide—a Hartree-Fock ab initio approach. J Phys Chem Solids 54:1603–1611

    Article  Google Scholar 

  • Pascale F, Zicovich-Wilson CM, Lopez F, Civalleri B, Orlando R (2004) The calculation of the vibration frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888–897

    Article  Google Scholar 

  • Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys Rev B46:6671–6687

    Google Scholar 

  • Petricek V, Dusek M, Palatinus L (2006) Jana2006. The crystallographic computing system

  • Porter EJ, Sheldrick GM (1972) Crystal-structure of a new crystalline modification of tetra-arsenic tetrasulfide (2,4,6,8-Tetrathia-1,3,5,7-Tetra-Arsatricyclo[3,3,0,03,7]-Octane). J Chem Soc Dalton Trans 13:1347–1349

    Article  Google Scholar 

  • Roisnel T, Rodriguez-Carvajal J (2001) WinPLOTR: A Windows tool for powder diffraction pattern analysis. Epdic 7: European Powder Diffraction, Pts 1 and 2, 378–3:118–123

    Google Scholar 

  • Skettrup T (1978) Urbach rule derived from thermal fluctuations in band-gap energy. Phys Rev B 18:2622–2631

    Article  Google Scholar 

  • Street GB, Gill WD (1966) Photoconductivity and drift mobilities in single crystal realgar As4S4. Physica Status Solidi 18:601

    Article  Google Scholar 

  • Tuktabiev MA, Popova SV, Brazhkin VV, Lyapin AG, Katayama Y (2009) Compressibility and polymorphism of alpha-As4S4 realgar under high pressure. J Phys Condens Matter 21:385401

    Article  Google Scholar 

  • Vaidya SN, Kennedy GC (1972a) Compressibility of 27 halides to 45kbar. J Phys Chem Solids 32:951–964

    Article  Google Scholar 

  • Vaidya SN, Kennedy GC (1972b) Compressibility of 22 elemental solids to 45kbar. J Phys Chem Solids 33:1377–1389

    Article  Google Scholar 

  • Wilson AJC (1995) International tables for crystallography, vol C. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yu SC, Zoltai T (1972) Crystallography of a high-temperature phase of realgar. Am Miner 57:1873–1876

    Google Scholar 

  • Zallen R, Slade ML (1978) Influence of pressure and temperature on phonons in molecular chalcogenides—cystalline As4S4 and S4N4. Phys Rev B 18:5775–5798

    Article  Google Scholar 

  • Zhao GL, Bagayoko D, Williams TD (1999) Local-density-approximation prediction of electronic properties of GaN, Si, C, and RuO2. Phys Rev B 60:1563–1572

    Article  Google Scholar 

  • Zicovich-Wilson CM, Pascale F, Roetti C, Saunders VR, Orlando R, Dovesi R (2004) Calculation of the vibration frequencies of alpha-quartz: the effect of Hamiltonian and basis set. J Comput Chem 25:1873–1881

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the possibility to carry out powder diffraction measurements within the scope of project HS-3821 at beamline ID27 at the European Synchrotron Radiation Facility, ESRF, Grenoble. In particular, we thank Wilson Crichton, Pascal Schouwink and Robert Klein for their technical assistance. L.N. acknowledges funding by the European Commission through contract no. MEXC-CT-2005-024878. C.H. acknowledges funding by the “Nachwuchsförderung” of the University of Innsbruck. T.BZ. acknowledges funding by a grant from the Danish Agency for Science, Technology and Innovation. Constructive reviews from L. Bindi and an anonymous referee contributed to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clivia Hejny.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejny, C., Sagl, R., Többens, D.M. et al. Crystal-structure properties and the molecular nature of hydrostatically compressed realgar. Phys Chem Minerals 39, 399–412 (2012). https://doi.org/10.1007/s00269-012-0495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0495-y

Keywords

Navigation