Skip to main content

Advertisement

Log in

Raman study of radiation-damaged zircon under hydrostatic compression

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balan E, Neuville DR, Trocellier P, Fritsch E, Muller J-P, Calas G (2001) Metamictization and chemical durability of detrital zircon. Am Mineral 86:1025–1033

    Google Scholar 

  • Dawson P, Hargreave MM, Wilkinson GF (1971) The vibrational spectrum of zircon (ZrSiO4). J Phys C Solid State Phys 4:240–256. doi:10.1088/0022-3719/4/2/014

    Article  Google Scholar 

  • Ewing RC, Meldrum A, Wang LM, Weber WJ, Corrales LR (2003) Radiation effects in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, Washington DC, pp 387–425

    Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Shinno I (2000) Laser-induced luminescence of rare-earth elements in natural zircon. J Alloys Com 300–301:267–274

    Article  Google Scholar 

  • Gaft M, Shinno I, Panczer G, Reisfeld R (2002) Laser-induced time-resolved spectroscopy of visible broad luminescence bands in zircon. Mineral Petrol 76:235–246. doi:10.1007/s007100200043

    Article  Google Scholar 

  • Glasmacher UA, Lang M, Keppler H, Langenhorst F, Neumann R, Schardt D, Trautmann C, Wagner GA (2006) Phase transitions in solids stimulated by simultaneous exposure to high pressure and relativistic heavy ions. Phys Rev Lett 96:195701-1–195071-4

    Article  Google Scholar 

  • Glinnemann J, Kusaka K, Harris JW (2003) Oriented graphite single-crystal inclusions in diamond. Z Kristallogr 218:733–739. doi:10.1524/zkri.218.11.733.20302

    Article  Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439. doi:10.1046/j.1525-1314.2000.00266.x

    Article  Google Scholar 

  • Knittle E, Williams Q (1993) High-pressure Raman spectroscopy of ZrSiO4: observation of the zircon to scheelite transition at 300 K. Am Mineral 78:245–252

    Google Scholar 

  • Lang M, Glasmacher UA, Neumann R, Schardt D, Trautmann C, Wagner GA (2005) Energy loss of 50-GeV uranium ions in natural diamond. Appl Phys A 80:691–694. doi:10.1007/s00339-004-3104-1

    Article  Google Scholar 

  • Lang M, Zhang F, Lian J, Trautmann C, Neumann R, Ewing RC (2008) Irradiation-induced stabilization of zircon (ZrSiO4) at high pressure. Earth Planet Sci Lett 269:291–295. doi:10.1016/j.epsl.2008.02.027

    Article  Google Scholar 

  • Lide DR (2003) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676. doi:10.1029/JB091iB05p04673

    Article  Google Scholar 

  • Mazhenov NA, Murgorodskij AP, Lazarev AN (1979) Resonance-splitting of inner vibrational frequencies of heavy anions in zircon (ZrSiO4) crystals. Inorg Mater 15:495–503 in Russian

    Google Scholar 

  • Meldrum A, Zinkle SJ, Boatner LA, Ewing RC (1999) Amorphization, recrystallization, and phase decomposition in the ABO4 orthosilicates. Phys Rev B 59:3981–3992. doi:10.1103/PhysRevB.59.3981

    Article  Google Scholar 

  • Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, Washington DC, pp 445–519

    Google Scholar 

  • Nasdala L, Hanchar JM (2005) Comment on: application of Raman spectroscopy to distinguish metamorphic and igneous zircon (Xian et al., Anal Lett (2004) vol. 37, p. 119). Anal Lett 38:727–734

    Google Scholar 

  • Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircons: a Raman spectroscopic study. Eur J Mineral 7:471–478

    Google Scholar 

  • Nasdala L, Irmer G, Jonckheere R (2002a) Radiation damage ages: practical concept or impractical vision?—reply to two comments on “Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage”, and further discussion. Contrib Mineral Petrol 143:758–765

    Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P et al (2002b) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140. doi:10.1016/S0009-2541(02)00152-3

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E et al (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Google Scholar 

  • Nelson DF, Sturge MD (1965) Relation between absorption and emission in the region of the R lines of ruby. Phys Rev 137:A1117–A1130. doi:10.1103/PhysRev.137.A1117

    Article  Google Scholar 

  • Parkinson CD, Katayama I (1999) Present-day ultrahigh-pressure conditions of coesite inclusions in zircon and garnet: evidence from laser Raman microspectroscopy. Geology 27:979–982. doi 10.1130/0091-7613(1999)027≤0979:PDUPCO≥2.3.CO;2

    Article  Google Scholar 

  • Pidgeon RT, Nemchin AA, van Bronswijk W, Geisler T, Meyer C, Compston W et al (2007) Complex history of a zircon aggregate from lunar breccia 73235. Geochim Cosmochim Acta 71:1370–1381. doi:10.1016/j.gca.2006.11.021

    Article  Google Scholar 

  • Piermarini GJ, Block S, Barnett JD, Forman RA (1975) Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J Appl Phys 46:2774–2780. doi:10.1063/1.321957

    Article  Google Scholar 

  • Powell RC (1967) Fluorescence studies of energy transfer between single and pair Cr3+ systems in Al2O3. Phys Rev 155:296–308. doi:10.1103/PhysRev.155.296

    Article  Google Scholar 

  • Rothamel U, Heber J, Grill W (1983) Vibronic sidebands in ruby. J Phys B Condens Matter 50:297–304. doi:10.1007/BF01470041

    Article  Google Scholar 

  • Sharma SK, Mao HK, Bell PM, Xu JA (1985) Measurement of stress in diamond anvils with micro-Raman spectroscopy. J Raman Spectrosc 16:350–352. doi:10.1002/jrs.1250160513

    Article  Google Scholar 

  • Sobolev NV, Fursenko BA, Goryainov SV, Shu JF, Hemley RJ, Mao HK et al (2000) Fossilized high pressure from the Earth’s deep interior: the coesite-in-diamond barometer. Proc Natl Acad Sci USA 97:11875–11879. doi:10.1073/pnas.220408697

    Article  Google Scholar 

  • Syme RWG, Lockwood DJ, Kerr J (1977) Raman spectrum of synthetic zircon (ZrSiO4) and thorite (ThSiO4). J Phys C Solid State Phys 10:1335–1348. doi:10.1088/0022-3719/10/8/036

    Article  Google Scholar 

  • Trachenko K, Brazhkin VV, Tsiok OB, Dove MT, Salje EKH (2007) Pressure-induced structural transformation in radiation-amorphized zircon. Phys Rev Lett 98:135502-1–135502-4

    Article  Google Scholar 

  • Verma P, Abbi SC, Jain KP (1995) Raman-scattering probe of anharmonic effects in GaAs. Phys Rev B 51:16660–16667. doi:10.1103/PhysRevB.51.16660

    Article  Google Scholar 

  • Wang W, Scarratt K, Emmett J, Breeding C, Douthit T (2006) The effects of heat treatment on zircon inclusions in Madagascar sapphires. Gems Gemol 42:134–150

    Google Scholar 

  • Wanthanachaisaeng B, Häger T, Hofmeister W, Nasdala L (2006) Raman- und fluoreszenz-spektroskopische Eigenschaften von Zirkon-Einschlüssen in chrom-haltigen Korunden aus Ilakaka und deren Veränderung durch Hitzebehandlung. Gemmologie 55:119–132

    Google Scholar 

  • Wopenka B, Jolliff BL, Zinner E, Kremser DT (1996) Trace element zoning and incipient metamictization in a lunar zircon: application of three microprobe techniques. Am Mineral 81:902–912

    Google Scholar 

  • Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schlüter J et al (2000) Annealing of α-decay damage in zircon: a Raman spectroscopic study. J Phys Condens Matter 12:3131–3148. doi:10.1088/0953-8984/12/13/321

    Article  Google Scholar 

Download references

Acknowledgments

Zircon samples were kindly made available by J. M. Hanchar (synthetic ZrSiO4), W. Hofmeister (M144), and A. K. Kennedy (BR231, OR1, G168). Thoughtful comments of M. Gaft and an anonymous reviewer are gratefully acknowledged. Partial funding of this research was provided by the European Commission, contract no. MEXC-CT-2005-024878, and the FWF Austrian Science Fund, grant P20028-N10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Nasdala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasdala, L., Miletich, R., Ruschel, K. et al. Raman study of radiation-damaged zircon under hydrostatic compression. Phys Chem Minerals 35, 597–602 (2008). https://doi.org/10.1007/s00269-008-0251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0251-5

Keywords

Navigation