Skip to main content
Log in

Thermoelasticity and high-T behaviour of anthophyllite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermoelastic behaviour of anthophyllite has been determined for a natural crystal with crystal-chemical formula ANa0.01 B(Mg1.30Mn0.57Ca0.09Na0.04) C(Mg4.95Fe0.02Al0.03) T(Si8.00)O22 W(OH)2 using single-crystal X-ray diffraction to 973 K. The best model for fitting the thermal expansion data is that of Berman (J Petrol 29:445–522, 1988) in which the coefficient of volume thermal expansion varies linearly with T as α V,T  = a 1 + 2a 2 (T − T 0): α298 = a 1 = 3.40(6) × 10−5 K−1, a 2 = 5.1(1.0) × 10−9 K−2. The corresponding axial thermal expansion coefficients for this linear model are: α a ,298 = 1.21(2) × 10−5 K−1, a 2,a  = 5.2(4) × 10−9 K−2; α b ,298 = 9.2(1) × 10−6 K−1, a 2,b  = 7(2) × 10−10 K−2. α c ,298 = 1.26(3) × 10−5 K−1, a 2,c  = 1.3(6) × 10−9 K−2. The thermoelastic behaviour of anthophyllite differs from that of most monoclinic (C2/m) amphiboles: (a) the ε 1 − ε 2 plane of the unit-strain ellipsoid, which is normal to b in anthophyllite but usually at a high angle to c in monoclinic amphiboles; (b) the strain components are ε 1 ≫ ε 2 > ε 3 in anthophyllite, but ε 1 ~ ε 2 ≫ ε 3 in monoclinic amphiboles. The strain behaviour of anthophyllite is similar to that of synthetic C2/m ANa B(LiMg) CMg5 TSi8 O22 W(OH)2, suggesting that high contents of small cations at the B-site may be primarily responsible for the much higher thermal expansion ⊥(100). Refined values for site-scattering at M4 decrease from 31.64 epfu at 298 K to 30.81 epfu at 973 K, which couples with similar increases of those of M1 and M2 sites. These changes in site scattering are interpreted in terms of Mn ↔ Mg exchange involving M1,2 ↔ M4, which was first detected at 673 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson OL, Isaak D, Oda HT (1992) High temperature elastic constant data on minerals relevant to geophysics. Rev Geophys 30:57–92

    Article  Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2–H2O-CO2. J Petrol 29:445–522

    Google Scholar 

  • Cámara F, Oberti R, Iezzi G, Della Ventura G (2003) The P21/m ↔ C2/m phase transition in synthetic amphibole Na(NaMg)Mg5Si8O22(OH)2: thermodynamic and crystal-chemical evaluation. Phys Chem Mineral 30:570–581

    Article  Google Scholar 

  • Cámara F, Oberti R, Casati N (2008) The P21/m → C2/m phase transition in Na (NaMg) Mg5 Si8 O22 F2: a crystal-chemical study and the role of differential polyhedral expansion. Zeit Kristallogr 223:148–159

    Article  Google Scholar 

  • Cameron M, Sueno S, Papike JJ, Prewitt CT (1983) High temperature crystal chemistry of K and Na fluor-richterites. Am Mineral 68:924–943

    Google Scholar 

  • Cannillo E, Germani G, Mazzi F (1983) New crystallographic software for Philips PW11000 single crystal diffractometer. CNR Centro di Studio per la Cristallografia, Internal Report 2

  • Dove MT (2003) Structure and dynamics: an atomic view of materials. Oxford Master Series in Condensed Matter Physics, Oxford University Press

  • Downs RT, Gibbs GV, Bartelmehs KL, Boisen MB Jr (1992) Variations of bond lengths and volumes of silicate tetrahedra with temperature. Am Mineral 77:751–757

    Google Scholar 

  • Hawthorne FC, Della Ventura G (2007) Short-range order in amphiboles. Rev Mineral Geochem 67:173–222

    Article  Google Scholar 

  • Hawthorne FC, Oberti R (2007) Amphiboles: crystal chemistry. Rev Mineral Petrol 67:1–54

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Iezzi G, Tribaudino M, Della Ventura G, Nestola F, Bellatreccia F (2005) High-T phase transition of synthetic ANaB(LiMg)CMg5Si8O22(OH)2 amphibole: an X-ray synchrotron powder diffraction and FTIR spectroscopic study. Phys Chem Mineral 32:515–523

    Article  Google Scholar 

  • Jenkins DM, Corona JC (2006) Molar volume and thermal expansion of glaucophane. Phys Chem Mineral 33:356–362

    Article  Google Scholar 

  • Knight KS (1996) A neutron powder diffraction determination of the thermal expansion tensor of crocoite (PbCrO4) between 60 K and 290 K. Mineral Mag 60:963–972

    Article  Google Scholar 

  • Maresch WV, Czank M (2007) The significance of reaction pathway in synthesizing single-phase amphibole of defined composition. Rev Mineral Geochem 67:287–322

    Article  Google Scholar 

  • North ACT, Phillips DC, Mathews FS (1968) A semi-empirical method of absorption correction. Acta Crystallogr A24:351–359

    Google Scholar 

  • Oberti R, Hawthorne FC, Cannillo E, Cámara F (2007) Long-range order in amphiboles. Rev Mineral Geochem 67:125–172

    Article  Google Scholar 

  • Oberti R, Zema M, Tarantino S, Boiocchi M (2009) Themal expansivity and dehydrogenation in amphiboles. In: 25° European crystallographic meeting, Istanbul, Abstracts, 176

  • Ohashi Y (1982) A program to calculate the strain tensor from two sets of unit-cell parameters. In: Hazen RM, Finger LW (eds) Comparative crystal chemistry. Wiley, New York, pp 92–102

  • Ohashi Y, Burnham CW (1973) Clinopyroxene lattice deformations: the roles of chemical substitution and temperature. Am Mineral 58:843–849

    Google Scholar 

  • Pawley AR, Redfern SAT, Holland TJB (1996) Volume behaviour of hydrous minerals at high pressure and temperature: 1. Thermal expansion of lawsonite, zoisite, clinozoisite and diaspore. Am Mineral 81:335–340

    Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” (φρΖ) procedure for improved quantitative microanalysis. In: Microbeam analysis. San Francisco Press, San Francisco, pp 104–106

  • Redfern SAT, Artioli G, Rinaldi R, Henderson CMB, Knight KS, Wood BJ (2000) Octahedral cation ordering in olivine at high temperature. II: an in situ neutron powder diffraction study of MgFeSiO4 (Fa50). Phys Chem Mineral 27:630–637

    Article  Google Scholar 

  • Reece JJ, Redfern SAT, Welch MD, Henderson CMB (2000) Mn-Mg disordering in cummingtonite: a high temperature neutron powder diffraction study. Mineral Mag 64:255–266

    Article  Google Scholar 

  • Reece JJ, Redfern SAT, Welch MD, Henderson CMB, McCammon CA (2002) Temperature-dependent Fe2+–Mn2+ order–disorder behaviour in amphiboles. Phys Chem Mineral 29:562–570

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Google Scholar 

  • Sueno S, Cameron M, Papike JJ, Prewitt CT (1978) High temperature crystal chemistry of tremolite. Am Mineral 58:649–664

    Google Scholar 

  • Sueno S, Matsuura M, Gibbs GV, Boisen MB (1998) A crystal chemical study of protoanthophyllite: orthoamphiboles with the protoamphibole structure. Phys Chem Mineral 25:366–377

    Article  Google Scholar 

  • Tribaudino M, Bruno M, Iezzi G, Della Ventura G, Margiolaki I (2008) The thermal behavior of richterite. Am Mineral 93:1659–1665

    Article  Google Scholar 

  • Walitzi EM, Walter F, Ettinger K (1989) Verfeinerung der kristallstruktur von anthophyllit vom Ochsenkogel/Gleinalpe, Osterreich. Zeit Kristallogr 188:237–244

    Article  Google Scholar 

  • Welch MD, Cámara F, Della Ventura G, Iezzi G (2007) Non-ambient in situ studies of amphiboles. Rev Mineral Geochem 67:223–260

    Article  Google Scholar 

  • Welch MD, Reece JJ, Redfern SAT (2008) Rapid intracrystalline exchange of divalent cations in amphiboles: a high-temperature neutron diffraction study of synthetic K-richterite AK B(NaCa) C(Mg2.5Ni2.5) Si8 O22 (OH)2. Mineral Mag 72:877–886

    Article  Google Scholar 

  • Wilson AJC, Prince E (eds) (1999) International tables for x-ray crystallography, volume C: mathematical, physical and chemical tables, 2nd edn. Kluwer, Dordrecht

Download references

Acknowledgments

MDW gratefully acknowledges financial support from the CNR in the form of a 2009 Short-term mobility grant that allowed him to undertake experiments at CNR-IGG in Pavia. The Natural History Museum (London) is also thanked for providing financial support to MDW for this research. FC and RO acknowledge funding from the CNR project TA.01.004.002 and the MIUR-PRIN 2007 project “Complexity in minerals: modulation, phase transition, structural disorder”. We thank Associate Editor Milan Rieder and the reviewers Fabrizio Nestola and Giancarlo Della Ventura for their helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Welch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, M.D., Cámara, F. & Oberti, R. Thermoelasticity and high-T behaviour of anthophyllite. Phys Chem Minerals 38, 321–334 (2011). https://doi.org/10.1007/s00269-010-0406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0406-z

Keywords

Navigation