Skip to main content
Log in

Crossover of cation partitioning in olivines: a combination of ab initio and Monte Carlo study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We report studies based on a combination of ab initio electronic structure and Monte Carlo (MC) technique on the problem of cation partitioning among inequivalent octahedral sites, M1 and M2 in mixed olivines containing Mg2+ and Fe2+ ions. Our MC scheme uses interactions derived out of ab initio, density functional calculations carried out on measured crystal structure data. Our results show that there is no reversal of the preference of Fe for M1 over M2 as a function of temperature. Our findings do not agree with the experimental findings of Redfern et al. (Phys Chem Miner 27:630–637, 2000), but are in agreement with those of Heinemann et al. (Eur J Mineral 18:673–689, 2006) and Morozov et al. (Eur J Mineral 17:495–500, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The order–disorder process in olivine is called non-convergent because M1 and M2 sites do not converge to symmetry equivalence even when Fe2+ and Mg2+ become randomly disordered.

  2. Contribution for h vanishes for 50:50 Fe–Mg olivine.

  3. The standard deviations are large for small quantities like J and J′ which are already at the borderline of DFT accuracy.

References

  • Abdu YA, Annersten H, Ericsson T, Hawthorne FC (2008) High-temperature cation ordering in olivine: an in situ Mössbauer study of synthetic (Mg0.55Fe0.45)2SiO4. Hyperfine Interact 186:99–103

    Article  Google Scholar 

  • Artioli G, Rinaldi R, Wilson CC, Zanazzi PF (1995) High-temperature Fe-Mg cation partitioning in olivine: in situ single-crystal neutron diffraction study. Am Mineral 80:197–200

    Google Scholar 

  • Binder K, Heermann DW (2002) Monte Carlo simulation in statistical physics: an introduction. Springer, Berlin

  • Birle JD, Gibbs GV, Moore PB, Smith JV (1968) Crystal structure of natural olivines. Am Mineral 53:807–824

    Google Scholar 

  • Burns RG (1970) Crystal field spectra and evidence of cation ordering in olivine minerals. Am mineral 55:1609

    Google Scholar 

  • Bush W, Hafner SS, Virgo D (1970) Some ordering of iron and magnesium at octahedrally coordinated sites in a magnesium-rich olivine. Nature 227:1339

    Article  Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  Google Scholar 

  • Chatterjee S, Sengupta S, Saha-Dasgupta T, Chatterjee K, Mandal N (2009) Site preference of Fe atoms in FeMgSiO4 and FeMg(SiO3)2 studied by density functional calculations. Phys Rev B 79:115103

    Article  Google Scholar 

  • Chatterjee S, Saha-Dasgupta T (2010) First-Principles simulations of structural, electronic, and magnetic properties of vacancy bearing Fe silicates. Phys Rev B 81:155105

    Article  Google Scholar 

  • Finger LW (1970) Fe/Mg ordering in olivines. Carnegie Institution of Washington year book, vol 69, pp 302–305

  • Ganguly J, Cheng W, O’Neill HSTC (1993) Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: Implications for stability and mixing properties. Am Miner 78:583–593

    Google Scholar 

  • Ganguly J, Tazzoli V (1994) Fe2+-Mg interdiffusion in orthopyroxene: retrieval from the data on intracrystallline exchange reaction. Am Mineral 79:1053–1067

    Google Scholar 

  • Ghose S, Wan C, McCallum IS (1976) Fe2+-Mg2+ order in an olivine from the lunar anorthosite 67075 and the significance of cation order in lunar and terrestrial olivines. Indian J Earth Sci 3:1

    Google Scholar 

  • Heinemann R, Staack V, Fischer A, Kroll H, Thomas V, Kirfel A (1999) Temperature dependence of Fe, Mg partitioning in Acapulco olivine. Am Mineral 84:1400–1405

    Google Scholar 

  • Heinemann R, Kroll H, Langenhorst F, Lueder T (2000) Time and temperature variation of the intracrystalline Fe2+, Mg fractionation in Johnstown meteoritic orthopyroxene. Eur J Mineral 12:163–176

    Google Scholar 

  • Heinemann R, Kroll H, Kirfel A, Barbier B (2003) Die Temperaturabhängigkeit der Fe2+, Mg-Verteilung in Olivinen. Ber. Dtsch. Mineral. Ges, Beih. z. Eur J Mineral, 15, Bh.1, 78 (in German)

    Google Scholar 

  • Heinemann R, Kroll H, Kirfel A, Barbier B (2006) Order and anti-order in olivine I: structural response to temperature. Eur J Mineral 18:673–689

    Article  Google Scholar 

  • Hubbard J (1963) Electron correlations in narrow energy bands. Proc R Soc Lond Ser A 276:238–257

    Article  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    Article  Google Scholar 

  • Kresse G, Furthmuller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15

    Article  Google Scholar 

  • Kresse G, Furthmuller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  • Kroll H, Knitter R (1991) Al, Si exchange kinetics in sanidine and anorthoclase and modeling of rock cooling paths. Am Mineral 76:928–941

    Google Scholar 

  • Kroll H, Schlenz H, Phillips MW (1994) Thermodynamic modelling of non-convergent ordering in orthopyroxenes: a comparison of classical and Landau approaches. Phys Chem Miner 21:555–560

    Article  Google Scholar 

  • Morozov M, Brinkmann C, Lottermoser W, Tipplet G, Amthauer G, Kroll H (2005) Octahedral cation partitioning in Mg, Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5Fe2+ 0.5)2SiO4 (Fa50). Eur J Mineral 17:495–500

    Article  Google Scholar 

  • Putnis A (1992) An introduction to mineral sciences. Cambridge University Press, Cambridge

  • Redfern SAT, Artioli G, Rinaldi R, Henderson CMB, Knight KS, Wood BJ (2000) Octahedral cation ordering in olivine at high temperature. II: An in situ neutron powder diffraction study on synthetic MgFeSiO4 (Fa50). Phys Chem Miner 27:630–637

    Article  Google Scholar 

  • Rinaldi R, Wilson CC (1996) Crystal Dynamics by neutron time-of-flight Laue diffraction in olivine up to 1573 K using single frame methods. Solid State Commun 97:395–400

    Article  Google Scholar 

  • Rinaldi R, Artioli G, Wilson CC, McIntyre G (2000) Octahedral cation ordering in olivine at high temperature. I: In situ neutron single-crystal diffraction studies on natural mantle olivines (Fa12 and Fa10). Phys Chem Minerals 27:623–629

    Article  Google Scholar 

  • Seifert FA, Virgo D (1975) Kinetics of Fe2+-Mg order-disorder in anthophyllites: quantitative cooling rates. Science 188:1107–1109

    Article  Google Scholar 

  • Smyth JR, Hazen RM (1973) The crystal structures of forsterite and hortonolite at several temperatures up to 900°C. Am Mineral 58:588–593

    Google Scholar 

  • Wenk HR, Raymond KN (1973) Four new structure refinements of olivine. Z Kristallogr 137:86–105

    Article  Google Scholar 

Download references

Acknowledgment

We thank funding through Advanced Materials Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanusri Saha-Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, S., Bhattacharyya, S., Sengupta, S. et al. Crossover of cation partitioning in olivines: a combination of ab initio and Monte Carlo study. Phys Chem Minerals 38, 259–265 (2011). https://doi.org/10.1007/s00269-010-0401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0401-4

Keywords

Navigation