Skip to main content

Advertisement

Log in

Calculation of infrared and Raman vibration modes of magnesite at high pressure by density-functional perturbation theory and comparison with experiments

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We predict the IR-TO, IR-LO and Raman modes (wave numbers and intensities) of magnesite (MgCO3) up to 50 GPa, at T = 0 K, using the density-functional perturbation theory up to a third order perturbation, under the harmonic assumption. The predicted IR-TO and Raman mode wave numbers, the mode Grüneisen parameters and the Davydov splittings are systematically compared with experimental data for all modes up to the pressures of 10–30 GPa and for some modes up to 50 GPa. Existing experiments allow extending this comparison only to IR-LO wave numbers of the E u3) asymmetric-stretch mode, confirming the odd experimental behavior of this mode at very high pressures. Predicted IR-TO, IR-LO and Raman intensities up to 50 GPa are just tabulated, but data are missing for their comparison with precise experiments. However, the generally good agreement observed between numerical results and experimental data, when their comparison is possible, suggests that first-principles methods are a major help to predict the entire spectrum up to very high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baroni S, Giannozzi P, Testa A (1987) Green’s-function approach to linear response in solids. Phys Rev Lett 58(18):1861–1864

    Article  Google Scholar 

  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73(2):515–562

    Article  Google Scholar 

  • Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    Google Scholar 

  • Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220(5–6):567–570

    Article  Google Scholar 

  • DeCicco PD, Johnson FA (1969) The quantum theory of lattice dynamics IV. Proc R Soc Lond A 310:111

    Article  Google Scholar 

  • Fiquet G, Guyot F, Itié J-P (1994) High-pressure X-ray diffraction study of carbonates; MgCO3, CaMg(CO3)2, and CaCO3. Am Mineral 79(1–2):15–23

    Google Scholar 

  • Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M (2002) Structural refinements of magnesite at very high pressure. Am Mineral 87(8–9):1261–1265 (Letter)

    Google Scholar 

  • Gillet P (1993) Stability of magnesite (MgCO3) at mantle pressure and temperature conditions; a Raman spectroscopy study. Am Mineral 78(11–12):1328–1331

    Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan PF (1993) Raman spectroscopy studies of carbonates. Part I. High pressure and high-temperature behaviour of calcite, magnesite, dolomite, aragonite. Phys Chem Miner 20(1):1–18

    Article  Google Scholar 

  • Gonze X (1995a) Perturbation expansion of variational principles at arbitrary order. Phys Rev A 52(2):1086–1095

    Article  Google Scholar 

  • Gonze X (1995b) Adiabatic density-functional perturbation theory. Phys Rev A 52(2):1096–1114

    Article  Google Scholar 

  • Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55(16):10355–10368

    Article  Google Scholar 

  • Graf DL (1961) Crystallographic tables for the rhombohedral carbonates. Am Mineral 46:1283–1316

    Google Scholar 

  • Grzechnik A, Simon P, Gillet P, McMillan P (1999) An infrared study of MgCO3 at high pressure. Phys B: Condens Matter 262(1–2):67–73

    Article  Google Scholar 

  • Handbook of Minerals Raman Spectra (2009) http://www.ens-Lyon.fr/LST/Raman

  • Hellwege KH, Lesch W, Plihal M, Schaack G (1970) Zwei-Phononen-Absorptionsspektren und Dispersion der Schwingungszweige in Kristallen der Kalkspatstruktur. Z Phys 232:61–86

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  • Parlinski K (2007) Phonon manual version 4.28. http://wolf.ifj.edu.pl/phonon

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  • Pick RM, Cohen MH, Martin RM (1970) Microscopic theory of force constants in the adiabatic approximation. Phys Rev B 1(2):910–920

    Article  Google Scholar 

  • Refson K, Tulip PR, Clark SJ (2006) Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys Rev B 73(15):155114

    Article  Google Scholar 

  • Ross NL (1997) The equation of state and high-pressure behavior of magnesite. Am Mineral 82(7–8):682–688

    Google Scholar 

  • RRUFF project (2009) http://rruff.info/index.php/r=sample_search

  • Santillán J, Catalli K, Williams Q (2005) An infrared study of carbon–oxygen bonding in magnesite to 60 GPa. Am Mineral 90(10):1669–1673

    Article  Google Scholar 

  • Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulations: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14(11):2717–2744

    Article  Google Scholar 

  • Seto Y, Hamane D, Nagai T, Fujino K (2008) Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Phys Chem Miner 35(4):223–229

    Article  Google Scholar 

  • Takafuji N, Fujino K, Nagai T, Seto Y, Hamane D (2006) Decarbonation reaction of magnesite in subducting slabs at the lower mantle. Phys Chem Miner 33(10):651–654

    Article  Google Scholar 

  • Valenzano L, Noël Y, Orlando R, Zicovich-Wilson CM, Ferrero M, Dovesi R (2007) Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite. Theor Chem Acc 117(5–6):991–1000. http://www.crystal.unito.it/vibs/carbonates/

    Article  Google Scholar 

  • Wagner J-M (2000) On the inadequacy of linear pressure dependence of vibrational frequency. Solid State Commun 116:355–356

    Article  Google Scholar 

  • Williams Q, Collerson B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite-III at high pressures. Am Mineral 77(11–12):1158–1165

    Google Scholar 

Download references

Acknowledgments

Authors thank Giulio Ottonello and Masanori Matsui for their help and suggestions in revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Jouanna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 20.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, S.J., Jouanna, P., Haines, J. et al. Calculation of infrared and Raman vibration modes of magnesite at high pressure by density-functional perturbation theory and comparison with experiments. Phys Chem Minerals 38, 193–202 (2011). https://doi.org/10.1007/s00269-010-0395-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-010-0395-y

Keywords

Navigation