Skip to main content

Advertisement

Log in

Isothermal compression behavior of (Mg,Fe)O using neon as a pressure medium

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We present isothermal volume compression behavior of two polycrystalline (Mg,Fe)O samples with FeO = 39 and 78 mol% up to ~90 GPa at 300 K using synchrotron X-ray diffraction and neon as a pressure-transmitting medium. For the iron-rich (Mg0.22Fe0.78)O sample, a structural transition from the B1 structure to a rhombohedral structure was observed at 41.6 GPa, with no further indication of changes in structural or compression behavior changes up to 93 GPa. In contrast, a change in the compression behavior of (Mg0.61Fe0.39)O was observed during compression at P ≥ 71 GPa and is indicative of a spin crossover occurring in the Fe2+ component of (Mg0.61Fe0.39)O. The low-spin state exhibited a volume collapse of ~3.5%, which is a larger value than what was observed for a similar composition in a laser-heated NaCl medium. Upon decompression, the volume of the high-spin state was recovered at approximately 65 GPa. We therefore bracket the spin crossover at 65 ≤ P (GPa) ≤ 77 at 300 K (Mg0.61Fe0.39)O. We observed no deviation from the B1 structure in (Mg0.61Fe0.39)O throughout the pressure range investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-pressure and high-temperature crystal chemistry. (Reviews in Mineralogy and Geochemistry) Mineralogical Soc America, Washington, DC, pp 35–60

  • Auzende AL, Badro J, Ryerson FJ, Weber PK, Fallon SJ, Addad A, Siebert J, Fiquet G (2008) Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet Sci Lett 269:164–174

    Article  Google Scholar 

  • Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in Earth’s lower mantle: toward a deep lower mantle discontinuity. Science 300:789–791

    Article  Google Scholar 

  • Bower D, Gurnis M, Jackson JM, Sturhahn W (2009) Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase. Geophys Res Lett. doi:10.1029/2009GL037706

  • Crowhurst JC, Brown JM, Goncharov AF, Jacobsen SD (2008) Elasticity of (Mg, Fe)O through the spin transition of iron in the lower mantle. Science 319(5862):451–453

    Article  Google Scholar 

  • Duffy TS, Hemley RJ, Mao HK (1995) Equation of state at multimegabar pressures: magnesium oxide to 227 GPa. Phys Rev Lett 74:1371–1374

    Article  Google Scholar 

  • Fei Y, Zhang L, Corgne A, Watson HC, Ricolleau A, Meng Y, Prakapenka V (2007) Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophys Res Lett 34:L17307

    Article  Google Scholar 

  • Hammersley AP, Svenson SO, Hanfland M (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res 14:235–248

    Article  Google Scholar 

  • Irifune T (1994) Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature 370:131–133

    Article  Google Scholar 

  • Jacobsen SD, Reichmann HJ, Spetzler HA, Mackwell SJ, Smyth JR, Angel RJ, McCammon CA (2002) Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J Geophys Res Solid Earth 107:B2

    Article  Google Scholar 

  • Jacobsen SD, Spetzler H, Reichmann HJ, Smyth JR (2004) Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg, Fe)O. Proc Natl Acad Sci USA 101(16):5867–5871

    Article  Google Scholar 

  • Jacobsen SD, Lin JF, Angel RJ, Shen G, Prakapenka V, Dera P, Mao HK, Hemley RJ (2005) Single-crystal synchrotron X-ray diffraction study of wüstite and magnesiowüstite at lower-mantle pressures. J Synchrotron Radiat 12:577–583

    Article  Google Scholar 

  • Jacobsen SD, Holl CM, Adams KA, Fischer RA, Martin ES, Bina CR, Lin JF, Prakapenka VB, Kubo A, Dera P (2008) Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media. Am Miner 93:1823–1828

    Article  Google Scholar 

  • Jeanloz R, Ahrens TJ (1980) Equations of state of FeO and CaO. J R Astron Soc 62:505–528

    Google Scholar 

  • Kantor AP, Jacobsen SD, Kantor IY, Dubrovinsky L, McCammon CA, Reichmann HJ, Goncharenko IN (2004) Pressure-induced magnetization in FeO: evidence from elasticity and Mössbauer spectroscopy. Phys Rev Lett 93:93215502

    Article  Google Scholar 

  • Kantor I, Dubrovinsky L, McCammon C, Steinle-Neumann G, Kantor A, Skorodumova N, Pascarelli S, Aquilanti G (2009) Short-range order and Fe clustering in Mg1-xFexO under high pressure. Phys Rev B 80:014204

    Google Scholar 

  • Knittle E, Jeanloz R (1986) High-pressure metallization of FeO and implications for the Earth’s core. Geophys Res Lett 96:16169–16180

    Google Scholar 

  • Kondo T, Ohtani E, Hirao N, Yagi T, Kikegawa T (2004) Phase transitions of (Mg, Fe)O at megabar pressures. Phys Earth Planet Interiors 143–144:201–213

    Article  Google Scholar 

  • Larsen AC, Von Dreele R (2000) General structure analysis system (GSAS), Los Alamos National Laboratory, Los Alamos

  • Lin JF, Heinz DL, Mao HK, Hemley RJ, Devine JM, Li J, Shen GY (2003) Stability of magnesiowustite in Earth’s lower mantle. Proc Natl Acad Sci USA 100(8):4405–4408

    Article  Google Scholar 

  • Lin JF, Struzhkin VV, Jacobsen SD, Hu M, Chow P, Kung J, Liu H, Mao HK, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature 436:377–380

    Article  Google Scholar 

  • Lin JF, Jacobsen SD, Sturhahn W, Jackson JM, Zhao J, Yoo CS (2006) Sound velocities of ferropericlase in the Earth’s lower mantle. Geophys Res Lett 33. doi:10.1029/2006GL028099

  • Mackwell SJ, Bystricky M, Sproni C (2005) Fe–Mg interdiffusion in (Mg, Fe)O. Phys Chem Miner 32:418–425

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res B91:4673–4676

    Article  Google Scholar 

  • Mao HK, Shu J, Fei Y, Hu J, Hemley RJ (1996) The wustite enigma. Phys Earth Planet Interiors 96:135–145

    Article  Google Scholar 

  • Mao WL, Shu J, Hu J, Hemley RJ, Mao HK (2002) Displacive transition in magnesiowustite. J Phys Condens Matter 14:11349–11354

    Article  Google Scholar 

  • Marquardt H, Speziale S, Reichmann HJ, Frost DJ, Schilling FR, Garnero EJ (2009) Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science 324(5924):224–225. doi:10.1126/science.1169365

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett 32. doi:10/1029/2004GL021956

  • Persson K, Bengtson A, Ceder G, Morgan D (2006) Ab initio study of the composition dependence of the pressure-induced spin transition in the (Mg1−xFex)O system. Geophys Res Lett 33(16):L16306

    Article  Google Scholar 

  • Richet P, Mao HK, Bell PM (1989) Bulk moduli of magnesiowustite from static compression experiments. J Geophys Res 94:3037–3045

    Article  Google Scholar 

  • Rivers M, Prakapenka VB, Kubo A, Pullins C, Holl CM, Jacobsen SD (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28(3):273–292

    Article  Google Scholar 

  • Shu J, Mao HK, Hu J, Fei Y, Hemley RJ (1998) Single-crystal X-ray diffraction of wustite to 30 GPa under hydrostatic pressure. Neues Jahrb Miner Abh 172(2–3):309–323

    Google Scholar 

  • Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K, Sata N, Ohishi Y (2008) Partitioning of iron between perovskite/postperovskite and ferropericlase in the lower mantle. J Geophys Res 113:B11204. doi:10.1029/2008JB005730

    Article  Google Scholar 

  • Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci USA 102(50):17918–17922

    Article  Google Scholar 

  • Speziale S, Lee VE, Clark SM et al (2007) Effects of Fe spin transition on the elasticity of (Mg, Fe) O magnesiowustites and implications for the seismological properties of the Earth’s lower mantle J Geophys Res 112(B10):B10212

    Google Scholar 

  • Struzhkin VV, Mao HK, Hu JZ, Schwoerer-Bohning M, Shu JF, Hemley RJ, Sturhahn W, Hu MY, Alp EE, Eng P, Shen GY (2001) Nuclear inelastic X-ray scattering of FeO to 48 GPa. Phys Rev Lett 87:25. doi:10.1103/PhysRevLett.87.255501

    Google Scholar 

  • Sturhahn W, Jackson JM, Lin JF (2005) The spin state of iron in minerals of Earth’s lower mantle. Geophys Res Lett 32:L12307. doi:10.1029/2005GL022802

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Tsuchiya T, Wentzcovitch RM, CRSd Silver, Gironcoli SD (2006) Spin transition is magnesiowüstite in Earth’s lower mantle. Phys Rev Lett 96:198501

    Article  Google Scholar 

  • Zha CS, Mao HK, Hemley RJ (2000) Elasticity of MgO and a primary pressure scale to 55 GPa. Proc Natl Acad Sci USA 97(25):13494–13499

    Article  Google Scholar 

Download references

Acknowledgments

We thank E. Hamecher (Caltech) for help with conducting experiments, S. Mackwell (Lunar & Planetary Institute, TX) for synthesizing and providing the (Mg0.22Fe0.78)O sample. The powdered (Mg0.61Fe0.39)O sample was synthesized with the help of Y. Fei (Carnegie Institution of Washington). I. Kantor and an anonymous reviewer provided helpful suggestions that improved the manuscript. This work was supported by the National Science Foundation EAR Geophysics 0711542 (JMJ). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this work were supported by COMPRES under NSF Cooperative Agreement EAR 06-49658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill K. Zhuravlev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, K.K., Jackson, J.M., Wolf, A.S. et al. Isothermal compression behavior of (Mg,Fe)O using neon as a pressure medium. Phys Chem Minerals 37, 465–474 (2010). https://doi.org/10.1007/s00269-009-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0347-6

Keywords

Navigation