Skip to main content
Log in

Spin Crossover and the Magnetic PT Phase Diagram of Hematite at High Hydrostatic Pressures and Cryogenic Temperatures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0–72 GPa and the temperature range of 36–300 K in order to study the magnetic properties at a phase transition near a critical pressure of ~50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0–77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of ~48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS–LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic PT phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. R. Soc. London, Ser. A 277, 237 (1964).

    Article  ADS  Google Scholar 

  2. Transition Metal Oxides, Ed. by P. A. Cox (Clarendon, Oxford, 1992).

  3. T. Yagi and S. Akimoto, in High Pressure Research in Geophysics, Ed. by S. Akimoto and M. Manghnani (Kluwer Academic, Tokyo, 1982), p.81.

  4. T. Suzuki, T. Yagi, A. Akimoto, A. Ito, S. Morimoto, and S. Syono, in Solid State Physics under Pressure, Ed. by S. Minomura (KTK Scientific, Tokyo, 1985), p.149.

  5. J. S. Olsen, C. Cousins, L. Gerward, H. Jhans, and B. Sheldon, Phys. Scr. 43, 327 (1991).

    Article  ADS  Google Scholar 

  6. G. Rozenberg, L. Dubrovinsky, M. Pasternak, O. Naaman, T. L. Bihan, and R. Ahuja, Phys. Rev. B 65, 064112 (2002).

    Article  ADS  Google Scholar 

  7. J. Badro, V. Struzhkin, J.-F. Shu, R. Hemley, H.-K. Mao, C. Kao, J.-P. Rueff, and G. Shen, Phys. Rev. Lett. 83, 4101 (1999).

    Article  ADS  Google Scholar 

  8. Y. Syono, A. Ito, S. Morimoto, S. Suzuki, T. Yagi, and S. Akimoto, Solid State Commun. 50, 97 (1984).

    Article  ADS  Google Scholar 

  9. S. Nasu, K. Kurimoto, S. Nagatomo, S. Endo, and F. Fujita, Hyperfine Interact. 29, 1583 (1986).

    Article  ADS  Google Scholar 

  10. M. Pasternak, G. Rozenberg, G. Machavariani, O. Naaman, R. Taylor, and R. Jeanloz, Phys. Rev. Lett. 82, 4663 (1999).

    Article  ADS  Google Scholar 

  11. M. P. Pasternak, G. K. Rozenberg, G. Y. Machavariani, O. Naaman, R. D. Taylor, and R. Jeanloz, Phys. Rev. Lett. 82, 4663 (1999).

    Article  ADS  Google Scholar 

  12. A. G. Gavriliuk, J. F. Lin, I. S. Lyubutin, and V. V. Struzhkin, JETP Lett. 84, 190 (2006).

    Article  ADS  Google Scholar 

  13. A. G. Gavriliuk and V. V. Struzhkin, Rev. Sci. Instrum. 80, 043906 (2009).

    Article  ADS  Google Scholar 

  14. Y. V. Shvyd'ko, Phys. Rev. B 59, 9132 (1999).

    Article  ADS  Google Scholar 

  15. S.-H. Shim and T. S. Duffy, Am. Mineralog. 87, 318 (2002).

    Article  ADS  Google Scholar 

  16. M. J. Massey, U. Baier, R. Merlin, and W. H. Weber, Phys. Rev. B 41, 7822 (1990).

    Article  ADS  Google Scholar 

  17. I. S. Lyubutin and A. G. Gavriliuk, Phys. Usp. 52, 989 (2009).

    Article  ADS  Google Scholar 

  18. I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriliuk, and V. V. Struzhkin, Phys. Rev. B 79, 085125 (2009).

    Article  ADS  Google Scholar 

  19. A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, M. Y. Hu, and H. K. Mao, JETP Lett. 82, 243 (2005).

    Article  Google Scholar 

  20. A. G. Gaviliuk, I. A. Trojan, I. S. Lyubutin, V. A. Sarkissian, and S. G. Ovchinnikov, JETP Lett. 100, 688 (2005).

    Article  Google Scholar 

  21. I. S. Lyubutin, A. G. Gavriliuk, I. A. Trojan, and R. A. Sadykov, JETP Lett. 82, 702 (2005).

    Article  ADS  Google Scholar 

  22. I. S. Lyubutin, A. G. Gavriliuk, K. V. Frolov, J.-F. Lin, and I. A. Trojan, JETP Lett. 90, 617 (2009).

    Article  ADS  Google Scholar 

  23. I. S. Lyubutin, J. F. Lin, A. G. Gavriliuk, A. A. Mironovich, A. G. Ivanova, A. L. Vasilyev, and V. V. Roddatis, Am. Mineralog. 98, 1803 (2013).

    Article  ADS  Google Scholar 

  24. A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, S. G. Ovchinnikov, M. Y. Hu, and P. Chow, Phys. Rev. B 77, 155112 (2008).

    Article  ADS  Google Scholar 

  25. I. S. Lyubutin, V. V. Struzhkin, A. A. Mironovich, A. G. Gavriliuk, P. G. Naumov, J. F. Lin, S. G. Ovchinnikov, S. Sinogeikin, P. Chow, Y. Xiao, and R. J. Hemley, Proc. Natl. Acad. Sci. 110, 7142 (2013).

    Article  ADS  Google Scholar 

  26. E. Bykova, L. Dubrovinsky, N. Dubrovinskaia, M. Bykov, C. McCammon, S. V. Ovsyannikov, H.-P. Liermann, I. Kupenko, A. I. Chumakov, R. Rueffer, M. Hanfland, and V. Prakapenka, Nat. Commun. 7, 10661 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Lyubutin.

Additional information

Original Russian Text © A.G. Gavriliuk, V.V. Struzhkin, A.A. Mironovich, I.S. Lyubutin, I.A. Troyan, P. Chow, Y. Xiao, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 4, pp. 252–259.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavriliuk, A.G., Struzhkin, V.V., Mironovich, A.A. et al. Spin Crossover and the Magnetic PT Phase Diagram of Hematite at High Hydrostatic Pressures and Cryogenic Temperatures. Jetp Lett. 107, 247–253 (2018). https://doi.org/10.1134/S0021364018040057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018040057

Navigation