Skip to main content
Log in

Electronic and magnetic structure of pyroxenes: II. Orthoferrosilite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The electronic and magnetic structure of the chain silicate orthoferrosilite Fe 2+2 Si2O6 has been investigated by electronic structure calculations in the local spin density approximation. All calculations are based on experimentally determined geometrical data at room temperature. The calculated spin-allowed dd excitation energies and hyperfine parameters are in quantitative agreement with the respective experimental data from optical absorption and Mössbauer spectroscopy. Inside one ribbon that is parallel to the crystallographic c axis and contains two non-equivalent M1 and M2 sites, all iron spins are ferromagnetically coupled with coupling constants of about +16 cm−1. Between these ribbons within the (bc)-plane a weak ferromagnetic coupling of about +2 cm−1 is obtained. Neighboured (bc)-planes are coupled antiferromagnetically via chains of SiB-tetrahedra but ferromagnetically via chains of SiA-tetrahedra. Such a theoretically determined "double-plane antiferromagnetic" spin structure is at variance with an experimentally derived magnetic structure. This discrepancy is attributed to differences between the geometry at room temperature and at temperatures below the Néel temperature currently not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bancroft GM, Burns RG (1967) Interpretation of the electronic spectra of iron in pyroxenes. Am Mineral 52:1278–1287

    Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge

  • Deer WA, Howie RA, Zussman J (2001) Rock-forming minerals, vol 2A. Longman, London

    Google Scholar 

  • Diego Gatta G, Rinaldi R, Knight KS, Molin G, Artioli G (2007) High temperature structural and thermoelastic behaviour of mantle orthopyroxene: an in situ neutron powder diffraction study. Phys Chem Minerals 34:185–200

    Article  Google Scholar 

  • Goldman DS, Rossman GR (1977) The spectra of iron in orthopyroxene revisited: the splitting of the ground state. Am Mineral 62:151–157

    Google Scholar 

  • Goldman DS, Rossman GR (1979) Determination of quantitative cation distribution in orthopyroxene from electronic absorption spectra. Phys Chem Minerals 4:43–53

    Article  Google Scholar 

  • Geiger CA, Grodzicki M, Amthauer G (2003) The crystal chemistry and FeII-site properties of aluminosilicate garnet solid solutions as revealed by Mössbauer spectroscopy and electronic structure calculations. Phys Chem Minerals 30:280–292

    Google Scholar 

  • Goodenough JB (1958) An interpretation of the magnetic properties of the perovskite-type mixed crystals. J Phys Chem Sol 6:287–297

    Article  Google Scholar 

  • Grodzicki M (1980) A self-consistent-charge Xα method I. Theory. J Phys B 13:2683–2691

    Google Scholar 

  • Grodzicki M (1985) Theorie und Anwendungen der Self-Consistent-Charge-Xα Methode; Thesis of habilitation, Hamburg 1985

  • Grodzicki M, Amthauer G (2000) Electronic and magnetic structure of vivianite: cluster molecular orbital calculations. Phys Chem Minerals 27:694–702

    Article  Google Scholar 

  • Grodzicki M, Männing V, Trautwein AX, Friedt JM (1987) Calibration of isomer shifts and quadrupole coupling constants for 119Sn, 127I and 129I as derived from SCC-Xα calculations and Mössbauer measurements. J Phys B20:5595–5625

    Google Scholar 

  • Grodzicki M, Redhammer G, Amthauer G, Schünemann V, Trautwein AX, Velickov B, Schmid-Beurmann P (2003) Electronic structure of Fe-bearing lazulites. Am Mineral 88:481–488

    Google Scholar 

  • Grodzicki M, Redhammer G, Reissner M, Steiner W, Amthauer G (2009) Electronic and magnetic structure of pyroxenes I. Hedenbergite. Phys Chem Minerals 36 (in press)

  • Hiroi T, Takeda H (1992) Crystal-field theory calculations for Fe2+ ions in bronzite, augite and olivine. Phys Chem Minerals 19:229–235

    Google Scholar 

  • Jodlauk S, Becker P, Mydosh JA, Khomskii DI, Lorenz T, Streltsov SV, Hezel DC, Bohaty L (2007) Pyroxenes: a new class of multiferroics. J Phys Cond Matter 19:432201 (9 pages)

    Article  Google Scholar 

  • Kanamori J (1959) Superexchange interaction and symmety properties of electron orbitals. J Phys Chem Sol 10:87–98

    Article  Google Scholar 

  • Langer K, Khomenko VM (1999) The influence of crystal field stabilization energy on Fe2+ partitioning in paragenetic minerals. Contrib Mineral Petrol 137:220–231

    Google Scholar 

  • Lin C, Zhang L, Hafner SS (1993) Local electronic states of Fe2+ in orthopyroxene. Am Mineral 78:8–15

    Google Scholar 

  • Lottermoser W, Steiner K, Scharfetter G, Jiang K, Grodzicki M, Redhammer G, Amthauer G, Treutmann W (2002) The electric field gradient in synthetic fayalite α-Fe2SiO4 at moderate temperatures. Phys Chem Minerals 29:112–121

    Google Scholar 

  • Noodleman L (1981) Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys 74:5737–5743

    Article  Google Scholar 

  • Redhammer G, Roth G, Treutmann W, Hoelzel M, Paulus W, Andre G, Pietzonka C, Amthauer G (2009) The magnetic structure of clinopyroxene-type LiFeGe2O6 and revised data on multiferroic LiFeSi2O6. J Sol State Chem 182:2374–2384

    Google Scholar 

  • Regnard JR, Guillen R, Wiedenmann A, Fillion G, Hafner SS, Langer K (1986) Mössbauer and magnetic studies of orthorhombic FeSiO3. Hyperf Inter 28:589–592

    Google Scholar 

  • Runciman WA, Sengupta D, Marshall M (1973) The polarized spectra of iron in silicates I. Enstatite. Am Mineral 58:444–450

    Google Scholar 

  • Seifert F (1983) Mössbauer line broadening in aluminous orthopyroxenes: Evidence for next nearest neighbors interactions and short-range order. N Jb Miner Abh 148:141–162

    Google Scholar 

  • Shenoy GK, Kalvius GM, Hafner SS (1969) Magnetic behavior of the FeSiO3-MgSiO3 orthopyroxene system from NGR in 57Fe. J Appl Phys 40:1314–1316

    Google Scholar 

  • Slater JC (1974) Quantum theory of molecules and solids, vol 4, McGraw Hill, New York

    Google Scholar 

  • Smyth JR (1973) An orthopyroxene structure up to 850°C. Am Mineral 58:636–648

    Google Scholar 

  • Stanek J, Hafner SS (1988) Electric field gradient tensors of 57Fe in orthorhombic (Mg,Fe)SiO3. Hyperf Inter 39:235–252

    Google Scholar 

  • Steffen G, Langer K, Seifert F (1988) Polarized electronic absorption spectra of synthetic (Mg,Fe)-orthopyroxenes, ferrosilite and Fe3+-bearing ferrosilite. Phys Chem Minerals 16:120–129

    Google Scholar 

  • Sueno S, Cameron M, Prewitt CT (1976) Orthoferrosilite: high-temperature crystal chemistry. Am Mineral 61:38–53

    Google Scholar 

  • Taran MN, Langer K (2001) Electronic absorption spectra of Fe2+ ions in oxygen-based rock-forming minerals at temperatures between 297 and 600 K. Phys Chem Minerals 28:199–210

    Google Scholar 

  • Taran MN, Langer K (2003) Single-crystal high-prssure electronic absorption spectroscopic study of natural orthopyroxenes. Eur J Mineral 15:689–695

    Article  Google Scholar 

  • Van Alboom A, De Grave E, Vandenberghe RE (1993) Study of the temperature dependence of the hyperfine parameters in two orthopyroxenes by 57Fe Mössbauer spectroscopy. Phys Chem Minerals 20:263–275

    Google Scholar 

  • Van Alboom A, De Grave E, Vandenberghe RE (1994) Crystal-field interpretation of the temperature dependence of the 57Fe Mössbauer quadrupole splitting in two orthopyroxenes. Hyperf Inter 91:703–707

    Google Scholar 

  • Weber SU, Grodzicki M, Lottermoser W, Redhammer GJ, Topa D, Tippelt G, Amthauer G (2009) 57Fe-Mössbauer spectroscopy, X-ray single-crystal diffractometry, and electronic structure calculations on natural sinhalites. Phys Chem Minerals 36:259–269

    Google Scholar 

  • White WB, Keester KL (1966) Optical absorption spectra of iron in the rock-forming silicates. Am Mineral 51:774–791

    Google Scholar 

  • Wiedenmann A, Regnard JR (1986) Neutron diffraction study of the magnetic ordering in pyroxenes FexMg1-xSiO3. Sol State Commun 57:499–504

    Google Scholar 

  • Wiedenmann A, Regnard JR, Fillion G, Hafner SS (1986) Magnetic properties and magnetic ordering of the orthopyroxenes FexMg1-xSiO3. J Phys C19:3683–3695

    Google Scholar 

  • Yang H, Ghose S (1995) A transitional structural state and anomalous Fe-Mg order-disorder in Mg-rich orthopyroxene (Mg0.75Fe0.25)2Si2O6. Am Mineral 80:9–20

    Google Scholar 

Download references

Acknowledgments

Financial support by the FWF (grant number P18805-N17) is gratefully acknowledged. All calculations have been carried out at the Department of Computer Sciences in Salzburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grodzicki.

Additional information

Electronic and magnetic structure of pyroxenes Part I: Grodzicki et al. (2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zherebetskyy, D., Amthauer, G. & Grodzicki, M. Electronic and magnetic structure of pyroxenes: II. Orthoferrosilite. Phys Chem Minerals 37, 455–464 (2010). https://doi.org/10.1007/s00269-009-0346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0346-7

Keywords

Navigation