Skip to main content

Advertisement

Log in

Synthesis, TEM characterization and thermal behaviour of LiNiSi2O6 pyroxene

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A pyroxene with composition LiNiSi2O6 was synthesized at T = 1,473 K and P = 2.0 GPa; the cell parameters at T = 298 K are a = 9.4169(6) Å, b = 8.4465(7) Å, c = 5.2464(3) Å, β = 110.534(6)°, V = 390.78(3) Å3. TEM examination of the LiNiSi2O6 pyroxene showed the presence of h + k odd reflections indicative of a primitive lattice, and of antiphase domains obtained by dark field imaging of the h + k odd reflections. A HT in situ investigation was performed by examining TEM selected area diffraction patterns collected at high temperature and synchrotron radiation powder diffraction. In HTTEM the LiNiSi2O6 was examined together with LiCrSi2O6 pyroxene. In LiCrSi2O6 the h + k odd critical reflections disappear at about 340 K; they are sharp up to the transition temperature and do not change their shape until they disappear. In LiNiSi2O6 the h + k odd reflections are present up to sample deterioration at 650 K. A high temperature synchrotron radiation powder diffraction investigation was performed on LiNiSi2O6 between 298 and 773 K. The analysis of critical reflections and of changes in cell parameters shows that the space group is P-centred up to the highest temperature. The comparative analysis of the thermal and spontaneous strain contributions in P21/c and C2/c pyroxenes indicates that the high temperature strain in P-LiNiSi2O6 is very similar to that due to thermal strain only in C2/c spodumene and that a spontaneous strain contribution related to pre-transition features is not apparent in LiNiSi2O6. A different high-temperature behaviour in LiNiSi2O6 with respect to other pyroxenes is suggested, possibly in relation with the presence of Jahn–Teller distortion of the M1 polyhedron centred by low-spin Ni3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adlhart W, Frey F, Jagodzinski H (1980a) X-ray and neutron investigations of the P \( \mathop 1\limits^{ - } \)  − I \( \mathop 1\limits^{ - } \) transition in pure anorthite. Acta Crystallogr A 36:450–460. doi:10.1107/S0567739480000964

  • Adlhart W, Frey F, Jagodzinski H (1980b) X-ray and neutron investigations of the P \( \mathop 1\limits^{ - } \)  − I \( \mathop 1\limits^{ - } \) transition in anorthite with low albite content. Acta Crystallogr A 36:461–470. doi:10.1107/S0567739480000976

  • Arlt T, Kunz M, Stoltz J, Armbruster T, Angel RJ (2000) P-T-X data on P21/c clinopyroxenes and their displacive phase transitions. Contrib Mineral Petrol 138:35–45. doi:10.1007/PL00007660

    Article  Google Scholar 

  • Behruzi M, Hahn T, Prewitt CT, Baldwin K (1984) Low and high temperature crystal structures of LiFeGe2O6, LiFeSi2O6 and LiCrSi2O6. Acta Crystallogr A 40(Suppl):C-247

    Google Scholar 

  • Brown WL (1973) On Li and Na trivalent-metal pyroxenes and crystal field effects. Mineral Mag 38:43–48. doi:10.1180/minmag.1971.038.293.05

    Article  Google Scholar 

  • Cámara F, Iezzi G, Oberti R (2003) HT-XRD study of synthetic ferrian magnesian spodumene: the effect of site dimension on the P21/c → C2/c phase transition. Phys Chem Miner 30:20–30. doi:10.1007/s00269-002-0287-x

    Article  Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Mineral 58:594–618

    Google Scholar 

  • Carpenter MA (1992) Equilibrium thermodynamics of Al/Si ordering in anorthite. Phys Chem Miner 19:1–24. doi:10.1007/BF00206796

    Article  Google Scholar 

  • Chazel C, Menetrier M, Carlier D, Croguennec L, Delmas C (2007) DFT modeling of NMR contact shift mechanism in the ideal LiNi2O4 spinel and application to thermally treated layered Li0.5NiO2. Chem Mater 19:4166–4173. doi:10.1021/cm070324n

    Article  Google Scholar 

  • Grotenpaß M, Behruzi M, Hahn T (1983) Strukturen, Polymorphie un Mischkristallbildung im system LiScSi2O6–LiInSi2O6–LiScGe2O6–LiInGe2O6. Zeit Kristall 162:90–91

    Google Scholar 

  • Kopnin EM, Sato A, Takayama-Muromachi E (2003) High pressure synthesis and structure refinement of LiTiSi2O6. J Alloy Comp 354:L16–L19. doi:10.1016/S0925-8388(02)01360-9

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1997) GSAS: General Structure Analysis System. document LAUR 86-748. Los Alamos National Laboratory

  • Meneghini C, Artioli G, Balerna A, Gualtieri AF, Norby P, Mobilio S (2001) A translating imaging plate system for in situ experiments at the GILDA beamline. J Synchr Rad 8:1162–1166. doi:10.1107/S090904950100992X

    Article  Google Scholar 

  • Ohashi Y, Burnham CW (1973) Clinopyroxene lattice deformations: the roles of chemical substitution and temperature. Am Mineral 58:843–849

    Google Scholar 

  • Ohashi H, Osawa T (1988) Syntheses of LiNiSi2O6 and LiTiSi2O6 spodumenes. J Jpn Assoc Min Petr Econ Geol 83:308–310

    Google Scholar 

  • Ohashi H, Osawa T (2003), Syntheses of NaNiSi2O6 and NaYSi2O6 clinopyroxenes. In: Haruo O (ed) X-ray study on Si–O bonding. Maruzen, Tokyo, pp 258–264. ISBN 4-89630-094-7

  • Ohashi H, Sato A (2003) Studies on P21/c LiM3+Si2O6 pyroxenes. In Haruo O (ed) X-ray study on Si–O bonding. Maruzen, Tokyo, pp 229–243. ISBN 4-89630-094-7

  • Redhammer G, Roth G (2004a) Structural variation and crystal chemistry of LiMe3+Si2O6 clinopyroxenes Me3+ = Al, Ga, Cr, V, Fe, Sc and In. Zeit Kristall 219:278–294. doi:10.1524/zkri.219.5.278.32748

    Article  Google Scholar 

  • Redhammer G, Roth G (2004b) Structural changes upon the temperature dependent C2/c → P21/c phase transition in LiMe3+Si2O6 clinopyroxenes, Me3+ = Cr, Ga, Fe, V, Sc and In. Zeit Kristall 219:585–605. doi:10.1524/zkri.219.10.585.50825

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Paulus W, André G, Lottermoser W, Amthauer G, Treutmann W, Koppelhuber-Bitschnau B (2001) The crystal and magnetic structure of Li-egirine LiFe3+Si2O6: a temperature-dependent study. Phys Chem Miner 28:337–346. doi:10.1007/s002690100159

    Article  Google Scholar 

  • Sato A, Osawa T, Ohashi H (1994) LiGaSi2O6. Acta Crystallogr C 50:487–488. doi:10.1107/S0108270193009606

    Article  Google Scholar 

  • Sato A, Osawa T, Ohashi H (1995) Low-temperature form of LiGaSi2O6. Acta Crystallogr C 51:1959–1960. doi:10.1107/S0108270195004732

    Article  Google Scholar 

  • Satto C, Millet P, Galy J (1997) Lithium vanadium metasilicate, LiVSi2O6. Acta Crystallogr C 53:1727–1728. doi:10.1107/S0108270197008585

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  • Thomas M, David WIF, Goodenough JB, Groves P (1985) Synthesis and structural characterization of the normal spinel Li[Ni2]O4. Mater Res Bull 1137–1146. doi:10.1016/0025-5408(85)90087-X

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213. doi:10.1107/S0021889801002242

    Article  Google Scholar 

  • Tribaudino M (2000) A transmission electron microscope investigation on the C2/c − P21/c phase transition in clinopyroxenes along the diopside-enstatite (CaMgSi2O6–MgSi2O6) join. Am Mineral 85:707–715

    Google Scholar 

  • Tribaudino M, Benna P, Bruno E (2000a) TEM observations on the P \( \mathop 1\limits^{ - } \)  − I \( \mathop 1\limits^{ - } \) phase transition in feldspars along the join CaAl2Si2O8–SrAl2Si2O8. Am Mineral 85:963–970

    Google Scholar 

  • Tribaudino M, Prencipe M, Bruno M, Levy D (2000b) High pressure behaviour of Ca-rich C2/c clinopyroxenes along the join diopside-enstatite (CaMgSi2O6–Mg2Si2O6). Phys Chem Miner 27:656–664. doi:10.1007/s002690000106

    Article  Google Scholar 

  • Tribaudino M, Nestola F, Cámara F, Domeneghetti MC (2002) The high temperature P21/c-C2/c phase transition in Fe-free pyroxenes: structural and thermodynamic behaviour. Am Mineral 87:648–657

    Google Scholar 

  • Tribaudino M, Nestola F, Prencipe M, Rundlof H (2003a) A single-crystal neutron-diffraction investigation of spodumene at 54 K. Can Mineral 41:521–527. doi:10.2113/gscanmin.41.2.521

    Article  Google Scholar 

  • Tribaudino M, Nestola F, Meneghini C, Bromiley GD (2003b) The high temperature P21/c-C2/c phase transition in Fe-free Ca-rich P21/c clinopyroxenes. Phys Chem Miner 30:527–535. doi:10.1007/s00269-003-0338-y

    Article  Google Scholar 

  • Van Tendeloo G, Ghose S, Amelinckx S (1989) A dynamical model for the P \( \mathop 1\limits^{ - } \)  − I \( \mathop 1\limits^{ - } \) phase transition in anorthite, CaAl2Si2O8 I. Evidence from electron microscopy. Phys Chem Miner 16:311–319

    Google Scholar 

Download references

Acknowledgments

The critical comments by Fernando Camara and Günther Redhammer significantly improved the paper and are acknowledged. Financial support to this paper was given to M. Tribaudino by FIL funding, University of Parma. F. Nestola was funded by MIUR PRIN 2006047943 to A. Dal Negro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Tribaudino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tribaudino, M., Bromiley, G., Ohashi, H. et al. Synthesis, TEM characterization and thermal behaviour of LiNiSi2O6 pyroxene. Phys Chem Minerals 36, 527–536 (2009). https://doi.org/10.1007/s00269-009-0298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0298-y

Keywords

Navigation