Skip to main content
Log in

In situ study of the \( R\overline{3} c \to R\overline{3} m \) orientational disorder in calcite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The temperature dependences of the crystal structure and intensities of the (113) and (211) reflections in calcite, CaCO3, were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction data. Calcite transforms from \( R\overline{3} c \) to \( R\overline{3} m \) at about T c = 1,240 K. A CO3 group occupies, statistically, two positions with equal frequency in the disordered \( R\overline{3} m \) phase, but with unequal frequency in the partially ordered \( R\overline{3} c \) phase. One position for the CO3 group is rotated by 180° with respect to the other. The unequal occupancy of the two orientations in the partially ordered \( R\overline{3} c \) phase is obtained directly from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x − 1. The a cell parameter shows a negative thermal expansion at low T, followed by a plateau region at higher T, then a steeper contraction towards T c, where the CO3 groups disorder in a rapid process. Using a modified Bragg–Williams model, fits were obtained for the order parameter S, and for the intensities of the (113) and (211) reflections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antao SM, Mulder WH, Hassan I, Crichton W, Parise JB (2004) Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite → dolomite reaction boundary. Am Mineral 89:1142–1147

    Google Scholar 

  • Antao SM, Hassan I, Mulder WH, Lee PL (2008) The \( R\overline{3} c \to R\overline{3} m \) transition in nitratine, NaNO3 and implications for calcite, CaCO3. Phys Chem Miner. doi:10.1007/s00269-008-0232-8

  • Berg GW (1986) Evidence for carbonate in the mantle. Nature 324:50–51. doi:10.1038/324050a0

    Article  Google Scholar 

  • Carlson WD (1983) The polymorphs of CaCO3 and the aragonite-calcite transformations. Mineral Soc Am Rev Mineral 11:191–225

    Google Scholar 

  • Dove MT, Powell BM (1989) Neutron-diffraction study of the tricritical orientational order–disorder phase-transition in calcite at 1260-K. Phys Chem Miner 16:503–507. doi:10.1007/BF00197019

    Article  Google Scholar 

  • Dove MT, Swainson IP, Powell BM, Tennant DC (2005) Neutron powder diffraction study of the orientational order–disorder phase transition in calcite, CaCO3. Phys Chem Miner 32:493–503. doi:10.1007/s00269-005-0026-1

    Article  Google Scholar 

  • Ferrario M, Lyndenbell RM, McDonald IR (1994) Structural fluctuations and the order–disorder phase-transition in calcite. J Phys Condens Matter 6:1345–1358. doi:10.1088/0953-8984/6/7/007

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image to two-theta scan. High Press Res 14:235–248. doi:10.1080/08957959608201408

    Article  Google Scholar 

  • Harris MJ (1999) A new explanation for the unusual critical behavior of calcite and sodium nitrate, NaNO3. Am Mineral 84:1632–1640

    Google Scholar 

  • Harris MJ, Salje EKH, Guttler BK (1990) An infrared spectroscopic study of the internal-modes of sodium-nitrate—implications for the structural phase-transition. J Phys Condens Matter 2:5517–5527. doi:10.1088/0953-8984/2/25/004

    Article  Google Scholar 

  • Harris MJ, Hagen ME, Dove MT, Swainson IP (1998) Inelastic neutron scattering, phonon softening, and the phase transition in sodium nitrate, NaNO3. J Phys Condens Matter 10:6851–6861. doi:10.1088/0953-8984/10/30/022

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR 86-748

  • Lee PL, Shu D, Ramanathan M, Preissner C, Wang J, Beno MA et al (2008) A twelve-analyzer detector system for high-resolution powder diffraction. J Synchrotron Radiat 15(Pt 5):427–432

    Google Scholar 

  • Liu JJ, Duan CG, Ossowski MM, Mei WN, Smith RW, Hardy JR (2001) Simulation of structural phase transition in NaNO3 and CaCO3. Phys Chem Miner 28:586–590. doi:10.1007/s002690100191

    Article  Google Scholar 

  • Lynden-Bell RM, Ferrario M, Mcdonald IR, Salje E (1989) A molecular-dynamics study of orientational disordering in crystalline-sodium nitrate. J Phys Condens Matter 1:6523–6542. doi:10.1088/0953-8984/1/37/002

    Article  Google Scholar 

  • Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Mineral 70:590–600

    Google Scholar 

  • Maslen EN, Streltsov VA, Streltsova NR (1993) X-Ray study of the electron-density in calcite, CaCO3. Acta Crystallogr B 49:636–641. doi:10.1107/S0108768193002575

    Article  Google Scholar 

  • Megaw HD (1973) Crystal structures: a working approach. W. Saunders, Philadelphia

    Google Scholar 

  • Mirwald PW (1979) Determination of a high-temperature transition of calcite at 800°C and one bar CO2 pressure. Neues Jahrb Miner Monatsh 7:309–315

    Google Scholar 

  • Paul GL, Pryor AW (1971) The study of sodium nitrate by neutron diffraction. Acta Crystallogr B 27:2700–2702

    Google Scholar 

  • Payne SJ, Harris MJ, Hagen ME, Dove MT (1997) A neutron diffraction study of the order–disorder phase transition in sodium nitrate. J Phys Condens Matter 9:2423–2432. doi:10.1088/0953-8984/9/11/010

    Article  Google Scholar 

  • Redfern SAT, Salje E, Navrotsky A (1989) High-temperature enthalpy at the orientational order–disorder transition in calcite—implications for the calcite–aragonite phase-equilibrium. Contrib Mineral Petrol 101:479–484. doi:10.1007/BF00372220

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71. doi:10.1107/S0021889869006558

    Article  Google Scholar 

  • Salje E, Viswanathan K (1976) Phase-diagram calcite-aragonite as derived from crystallographic properties. Contrib Mineral Petrol 55:55–67. doi:10.1007/BF00372754

    Article  Google Scholar 

  • Schmahl WW (1988) Diffraction intensities as thermodynamic parameters—orientational ordering in NaNO3. Z Kristallogr 182:231–233

    Google Scholar 

  • Schmahl WW, Salje E (1989) X-ray-diffraction study of the orientational order–disorder transition in NaNO3—evidence for order parameter coupling. Phys Chem Miner 16:790–798. doi:10.1007/BF00209703

    Article  Google Scholar 

  • Strømme KO (1969a) The crystal structure of sodium nitrate in the high-temperature phase. Acta Chem Scand 23:1616–1624. doi:10.3891/acta.chem.scand.23-1616

    Article  Google Scholar 

  • Strømme KO (1969b) On the crystal structure of potassium nitrate in the high temperature phases I and III. Acta Chem Scand 23:1625–1636

    Article  Google Scholar 

  • Strømme KO (1972) On the mechanism of the continuous transformation in sodium nitrate. Acta Chem Scand 26:477–482

    Article  Google Scholar 

  • Strømme KO (1975) Crystal-structures of high-temperature forms of strontium and barium carbonate and structurally related compounds. Acta Chem Scand A 29:105–110

    Article  Google Scholar 

  • Swainson IP, Dove MT, Harris MJ (1998) The phase transitions in calcite and sodium nitrate. Physica B 241:397–399

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–221

    Article  Google Scholar 

  • Wang J, Toby BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. Rev Sci Instrum 79:085105. doi:10.1063/1.2969260

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for useful comments. XRD data were collected at the X-ray Operations and Research beamlines 1-BM and 11-BM, Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sytle M. Antao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antao, S.M., Hassan, I., Mulder, W.H. et al. In situ study of the \( R\overline{3} c \to R\overline{3} m \) orientational disorder in calcite. Phys Chem Minerals 36, 159–169 (2009). https://doi.org/10.1007/s00269-008-0266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0266-y

Keywords

Navigation