Skip to main content

Advertisement

Log in

Eutectic temperatures and melting relations in the Fe–O–S system at high pressures and temperatures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We have investigated melting relations in the Fe–O–S ternary system in the pressure range of 15–27 GPa and 1873 K. Subsolidus phase relations are Fe, Fe3S2, and FeO up to 17 GPa and Fe, Fe3S, and FeO above this pressure. The eutectic temperature slightly decreases from ambient pressure to 17 GPa, whereas increases above this pressure. The eutectic temperature in this study is 100 K lower than that in the Fe–S binary system. The oxygen content in the Fe–O–S eutectic liquid drops when the coexisting solid phases changes from FeS to Fe3S2. The cotectic lines in the ternary phase diagram lie close to the Fe–FeS binary axis. The isothermal sections indicate that oxygen solubility in the Fe–O–S liquid increases with increasing temperature, and with increasing sulfur content. The solubility of sulfur in the solid Fe has a maximum value at the eutectic temperature, and decreases with increasing temperature. Our results could have important implications for formation and composition of the Martian core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allegre CA, Manhes G, Lewin E (2001) Chemical composition of the earth and the volatitily control on planetary genetics. Earth Planet Sci Lett 185:49–69. doi:10.1016/S0012-821X(00)00359-9

    Article  Google Scholar 

  • Balog PS, Secco RA, Rubie DC, Frost DJ (2003) Equation of state of liquid Fe-10 wt.% S: implications for the metallic cores of planetary bodies. J Geophys Res 108(B2):2124. doi:10.1029/2001JB001646

    Google Scholar 

  • Bertka CM, Fei Y (1998) Density profile of an SNC model martian interior and the moment-of inertia factor of Mars. Earth Planet Sci Lett 157:79–88. doi:10.1016/S0012-821X(98)00030-2

    Article  Google Scholar 

  • Boehler R (1996) Fe–FeS eutectic temperatures to 629 kbar. Phys Earth Planet Inter 96:181–186. doi:10.1016/0031-9201(96)03150-0

    Article  Google Scholar 

  • Campbell AJ, Seagle CT, Heinz DL, Shen G, Prakapenka VB (2007) Partial melting in the iron–sulfur system at high pressure: a synchrotron X-ray diffraction study. Phys Earth Planet Inter 162:119–128. doi:10.1016/j.pepi.2007.04.001

    Article  Google Scholar 

  • Chudinovskikh L, Boehler R (2007) Eutectic melting in the system Fe–S to 44 GPa. Earth Planet Sci Lett 257:97–103. doi:10.1016/j.epsl.2007.02.024

    Article  Google Scholar 

  • Dreibus G, Palme H (1996) Cosmochemical constraints on the sulfur content in the earth’s core. Geochem Cosmochem Acta 60:1125–1130. doi:10.1016/0016-7037(96)00028-2

    Article  Google Scholar 

  • Dreibus G, Wänke H (1985) Mars, a volatile-rich planet. Meteoritics 20:367–381

    Google Scholar 

  • Fei Y, Bertka C (2005) The interior of Mars. Science 308:1120–1121. doi:10.1126/science.1110531

    Article  Google Scholar 

  • Fei Y, Bertka CM, Finger LW (1997) High-pressure iron-sulfur compounds Fe3S2, and melting relations in the system Fe–FeS. Science 275:1621–1623. doi:10.1126/science.275.5306.1621

    Article  Google Scholar 

  • Fei Y, Bertla CM, Prewitt CT (2000) Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. Am Mineral 85:1830–1833

    Google Scholar 

  • Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109:B02305–8. doi:1029/2003JB002562

    Article  Google Scholar 

  • Hauck S, Phillips RF (2002) Thermal and crustal evolution of Mars. J Geophys Res 107:E7, 5052. doi:10.1029/2001JE001801

  • Helffrich G, Kaneshima S (2004) Seismological constraints on core composition from Fe–O–S liquid immiscibility. Science 306:2239–2242. doi:10.1126/science.1101109

    Article  Google Scholar 

  • Hillgren VJ, Gessmann CK, Li J (2000) An experimental perspective on the light elements in the earth’s core. University of Arizona Press, Tuscon 29:245–263

  • Hirose K, Fei Y, Ono S, Yagi T, Funakoshi K (2001) In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the Earth’s mantle. Earth Planet Sci Lett 184:567–573. doi:10.1016/S0012-821X(00)00354-X

    Article  Google Scholar 

  • Jephcoat A, Olson P (1987) Is the inner core of the earth pure iron? Nature 325:332–335. doi:10.1038/325332a0

    Article  Google Scholar 

  • Kato T, Ringwood AE (1989) Melting relationships in the system Fe–FeO at high pressures: implication for the composition and formation of the earth’s core. Phys Chem Miner 16:524–538. doi:10.1007/BF00202207

    Article  Google Scholar 

  • Kawazoe T, Ohtani E (2006) Reaction between liquid iron and (Mg, Fe) SiO3-perovskite and solubilities of Si and O in molten iron at 27 GPa. Phys Chem Miner 33:227–234. doi:10.1007/s00269-006-0071-4

    Article  Google Scholar 

  • Kondo T, Ohtani E, Hirao N, Yagi T, Kikegawa T (2004) Phase transitions of (Mg, Fe)O at megabar pressures. Phys Earth Planet Inter 143/144:201–213. doi:10.1016/j.pepi.2003.10.008

    Article  Google Scholar 

  • Kubaschewski O (1982) Iron–binary phase diagram. Springer-Verlag, New York, pp 125–128

    Google Scholar 

  • Li J, Fei Y (2003) Experimental constraints on core composition, in treatise on geochemistry. In: Carlson RW (ed) vol. 2, pp 521–546, Elsevier, New York

  • Li J, Fei Y, Mao HK, Hirose K, Shieh SR (2001) Sulfur in the earth’s inner core. Earth Planet Sci Lett 193:509–514. doi:10.1016/S0012-821X(01)00521-0

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150:239–263. doi:10.1016/j.pepi.2004.10.010

    Article  Google Scholar 

  • Lodders K, Fegley B (1997) An oxygen isotope model for the composition of Mars. Icarus 126:373–394. doi:10.1006/icar.1996.5653

    Article  Google Scholar 

  • Longhi J, Knittle E, Holloway J, Wänke H (1992) The bulk composition, mineralogy, and internal structure of Mars. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tuscon, pp 184–208

    Google Scholar 

  • McCammon CA, Liu LG (1984) The effects of pressure and temperature on nonstoichiometric wüstite, Fe x O: the iron–rich phase boundary. Phys Chem Miner 10:106–113. doi:10.1007/BF00309644

    Article  Google Scholar 

  • McDonough WF (2003) Compositional model for the earth’s core, in mantle and core, vol 2, treatise on geochemistry. Elsevier, New York, pp 547–568

    Google Scholar 

  • Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W et al (1994) The phase boundary between α- and β-Mg2SiO4 determined by in X-ray observation. Science 265:1202–1203. doi:10.1126/science.265.5176.1202

    Article  Google Scholar 

  • Murakami M, Hirose K, Ono S, Tsuchiya T, Isshiki M, Watanuki T (2004) High pressure and high temperature phase transitions of FeO. Phys Earth Planet Inter 143/144:273–282. doi:10.1016/j.pepi.2003.06.011

    Article  Google Scholar 

  • Murthy RA, Hall HT (1970) The chemical composition of the earth’s core: possibility of sulphur in the core. Phys Earth Planet Inter 2:276–282. doi:10.1016/0031-9201(70)90014-2

    Article  Google Scholar 

  • Murthy RA, Hall HT (1972) The origin and chemical composition of the earth’s core. Phys Earth Planet Inter 6:123–130. doi:10.1016/0031-9201(72)90043-X

    Article  Google Scholar 

  • Naldrett AJ (1969) A portion of the system Fe–S–O between 900 and 1,080°C and its application to sulfide ore magmas. J Petrol 10:171–201

    Google Scholar 

  • Ohtani E, Kamaya N (1992) The geochemical model of Mars. Geophys Res Lett 19:2239–2242. doi:10.1029/92GL02369

    Article  Google Scholar 

  • Ohtani E, Ringwood AE, Hibberson W (1984) Composition of the core II. Effect of high pressure on solubility of FeO in molten iron. Earth Planet Sci Lett 71:94–103. doi:10.1016/0012-821X(84)90055-4

    Article  Google Scholar 

  • Poirier JP (1994) Light elements in the earth’s outer core: a critical review. Phys Earth Planet Inter 85:319–337. doi:10.1016/0031-9201(94)90120-1

    Article  Google Scholar 

  • Ringwood AE (1977) Composition of the core and implications for origin of the earth. Geochem J 11:111–135

    Google Scholar 

  • Ringwood AE, Hibberson W (1990) The system Fe–FeO revisited. Phys Chem Miner 17:313–319. doi:10.1007/BF00200126

    Article  Google Scholar 

  • Sanloup C, Guyot F, Gillet P, Fiquet G, Mezouar M, Martinez I (2000) Density measurements of liquid Fe–S alloys at high-pressure. Geophys Res Lett 27:811–814. doi:10.1029/1999GL008431

    Article  Google Scholar 

  • Sanloup C, Jambon A, Gillet P (1999) A simple chondritic model of Mars. Phys Earth Planet Inter 112:43–54. doi:10.1016/S0031-9201(98)00175-7

    Article  Google Scholar 

  • Sohl F, Spohn T (1997) The interior structure of Mars: implications from SNC meteorites. J Geophys Res 102:1613–1635. doi:10.1029/96JE03419

    Article  Google Scholar 

  • Stevenson DJ (2001) Mars’ core and magnetism. Nature 412:214–219. doi:10.1038/35084155

    Article  Google Scholar 

  • Stewart AJ, Schmidt MW, van Westrenen W, Libske C (2007) Mars: a new core-crystallization regime. Science 316:1323–1325. doi:10.1126/science.1140549

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T et al (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806. doi:10.1029/1999GL008425

    Article  Google Scholar 

  • Terasaki H, Frost DJ, Rubie DC, Langenhorst F (2005) The effect of oxygen and sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: implications for Martian core formation. Earth Planet Sci Lett 232:379–392. doi:10.1016/j.epsl.2005.01.030

    Article  Google Scholar 

  • Tsuno K, Ohtani E, Terasaki H (2007a) Immiscible two-liquid regions in the Fe–O–S system at high pressure: implications for planetary cores. Phys Earth Planet Inter 160:75–85. doi:10.1016/j.pepi.2006.09.004

    Article  Google Scholar 

  • Tsuno K, Terasaki H, Ohtani E, Suzuki A, Asahara Y, Nishida K, Sakamaki T, Funakoshi K, Kikegawa T (2007b) In situ observation and determination of liquid immiscibility in the Fe–O–S melt at 3 GPa using a synchrotron X-ray radiographic technique. Geophys Res Lett 34:L17303, doi:10/2007GL03750

  • Urakawa S, Kato M, Kumazawa M (1987) Experimental study on the phase relations in the system Fe–Ni–O–S up to 15 GPa. In: Manghnami MH, Shono Y (eds) High pressure research in mineral physics. Terrapub/AGU, pp 95–111

  • Urakawa S, Someya K, Terasaki H, Katsura T, Yokoshi S, Funakoshi K et al (2004) Phase relationships and equations of state for FeS at high pressures and temperatures and implications for the internal structure of Mars. Phys Earth Planet Inter 143/144:469–479. doi:10.1016/j.pepi.2003.12.015

    Article  Google Scholar 

  • Usselman TM (1975) Experimental approach to the state of the core: part I. The liquidus relations of the Fe0 rich portion of the Fe–Ni–S system from 30 to 100 kb. Am J Sci 275:278–290

    Google Scholar 

  • Wade J, Wood BJ (2005) Core formation and the oxidation state of the earth. Earth Planet Sci Lett 236:78–95. doi:10.1016/j.epsl.2005.05.017

    Article  Google Scholar 

  • Williams Q, Jeanloz R (1990) Melting relations in the iron-sulfur system at ultra-high pressures: implications for the thermal state of the earth. J Geophys Res 95:19299–19310. doi:10.1029/JB095iB12p19299

    Article  Google Scholar 

  • Williams JP, Nimmo F (2004) Thermal evolution of the Martian core: implications for an early dynamo. Geology 32:97–100. doi:10.1130/G19975.1

    Article  Google Scholar 

  • Yoder CF, Konopliv AS, Yuan DN, Standish EM, Folkner WM (2003) Fluid core size of Mars from detection of the solar tide. Science 300:299–303. doi:10.1126/science.1079645

    Article  Google Scholar 

Download references

Acknowledgments

We thank Y. Ito for the electron microprobe analysis of run products. Comments from S. Urakawa and an anonymous reviewer helped to improve the manuscript. This work was supported by the Grant-in-Aid of the Scientific Research (S) of the Ministry of Education, Culture, Science, Sport, and Technology of the Japanese Government (No. 14102009) to E.O., and conducted as a part of the 21st Century Center-of-Excellence program ‘Advanced Science and Technology Center for the Dynamic Earth’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyusei Tsuno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuno, K., Ohtani, E. Eutectic temperatures and melting relations in the Fe–O–S system at high pressures and temperatures. Phys Chem Minerals 36, 9–17 (2009). https://doi.org/10.1007/s00269-008-0254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0254-2

Keywords

Navigation