Skip to main content

Advertisement

Log in

Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Low-temperature isobaric heat capacities (C p ) of MgSiO3 ilmenite and perovskite were measured in the temperature range of 1.9–302.4 K with a thermal relaxation method using the Physical Properties Measurement System. The measured C p of perovskite was higher than that of ilmenite in the whole temperature range studied. From the measured C p , standard entropies at 298.15 K of MgSiO3 ilmenite and perovskite were determined to be 53.7 ± 0.4 and 57.9 ± 0.3 J/mol K, respectively. The positive entropy change (4.2 ± 0.5 J/mol K) of the ilmenite–perovskite transition in MgSiO3 is compatible with structural change across the transition in which coordination of Mg atoms is changed from sixfold to eightfold. Calculation of the ilmenite–perovskite transition boundary using the measured entropies and published enthalpy data gives an equilibrium transition boundary at about 20–23 GPa at 1,000–2,000 K with a Clapeyron slope of −2.4 ± 0.4 MPa/K at 1,600 K. The calculated boundary is almost consistent within the errors with those determined by high-pressure high-temperature in situ X-ray diffraction experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaogi M, Ito E (1993a) Heat capacity of MgSiO3 perovskite. Geophys Res Lett 20:105–108

    Article  Google Scholar 

  • Akaogi M, Ito E (1993b) Refinement of enthalpy measurement of MgSiO3 perovskite and negative pressure-temperature slopes for perovskite-forming reactions. Geophys Res Lett 20:1839–1842

    Article  Google Scholar 

  • Akaogi M, Tanaka A, Ito E (2002) Garnet-ilmenite-perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Phys Earth Planet Inter 132:303–324

    Article  Google Scholar 

  • Akaogi M, Takayama H, Kojitani H, Kawaji H, Atake T (2007) Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α-β-γ and postspinel phase relations at high pressure. Phys Chem Miner 34:169–183

    Article  Google Scholar 

  • Anderson OL (1998) Thermoelastic properties of MgSiO3 perovskite using the Debye approach. Am Mineral 83:23–35

    Google Scholar 

  • Anderson OL, Isaak D, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543

    Article  Google Scholar 

  • Ashida T, Kume S, Ito E, Navrotsky A (1988) MgSiO3 ilmenite: heat capacity, thermal expansivity, and enthalpy of transformation. Phys Chem Minerals 16:239–245

    Article  Google Scholar 

  • Berman RG, Brown TH (1985) Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation and high-temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Article  Google Scholar 

  • Chopelas A (1996) Thermal expansivity of lower mantle phases MgO and MgSiO3 perovskite at high pressure derived from vibrational spectroscopy. Phys Earth Planet Inter 98:3–15

    Article  Google Scholar 

  • Chopelas A (1999) Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high-pressure spectroscopic data. Am Mineral 84:233–244

    Google Scholar 

  • Christensen U (1995) Effect of phase transitions on mantle convection. Annu Rev Earth Planet Sci 23:65–87

    Article  Google Scholar 

  • Chudinovskikh L, Boehler R (2004) MgSiO3 phase boundaries measured in the laser-heated diamond anvil cell. Earth Planet Sci Lett 219:285–296

    Article  Google Scholar 

  • Dachs E, Bertoldi C (2005) Precision and accuracy of the heat-pulse calorimetric technique: low-temperature heat capacities of milligram-sized synthetic mineral samples. Eur J Mineral 17:251–259

    Article  Google Scholar 

  • Dobson DP, Jacobson SD (2004) The flux growth of magnesium silicate perovskite single crystals. Am Mineral 89:807–811

    Google Scholar 

  • Fabrichnaya O, Saxena SK, Richet P, Westrum EF (2004) Thermodynamic data, models and phase diagrams in multicomponent oxide systems. Springer, Berlin 198pp

  • Fei Y, Saxena SK (1986) A thermochemical data base for phase equilibria in the system Fe–Mg–Si–O at high pressure and temperature. Phys Chem Minerals 13:311–324

    Article  Google Scholar 

  • Fei Y, Saxena SK, Navrotsky A (1991) Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO–SiO2 at high pressure and temperature. J Geophys Res 95:6915–6928

    Article  Google Scholar 

  • Fei Y, Li J, Hirose K, Minarik W, Van Orman J, Sanloup C, van Westrenen W, Kamabayashi T, Funakoshi K (2004a) A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. Phys Earth Planet Inter 143–144:515–526

    Article  Google Scholar 

  • Fei Y, Orman JV, Li J, Westrenen Wv, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004b) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109. doi:10.1029/2003JB002562

  • Funamori N, Yagi T, Utsumi W, Kondo T, Uchida T, Funamori M (1996) Thermoelastic properties of MgSiO3 perovskite determined by in situ X-ray observations up to 30 GPa and 2000 K. J Geophys Res 101:8257–8269

    Article  Google Scholar 

  • Gillet P, Daniel I, Guyot F, Matas J, Chervin J-C (2000) A thermodynamic model for MgSiO3 perovskite derived from pressure, temperature and volume dependence of the Raman mode frequencies. Phys Earth Planet Inter 117:361–384

    Article  Google Scholar 

  • Hirose K, Komabayashi T, Murakami M, Funakoshi K (2001) In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO3. Geophys Res Lett 28:4351–4354

    Article  Google Scholar 

  • Hofmeister AM, Ito E (1992) Thermodynamic properties of MgSiO3 ilmenite from vibrational spectra. Phys Chem Minerals 18:423–432

    Article  Google Scholar 

  • Ito E, Takahashi E (1989) Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J Geophys Res 94:10637–10646

    Article  Google Scholar 

  • Ito E, Yamada H (1982) Stability relations of silicate spinels, ilmenites and perovskites. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center for Academic Publications Japan, Tokyo, pp 405–419

    Google Scholar 

  • Karki BB, Wentzcovitch RM (2002) First-principles lattice dynamics and thermoelasticity of MgSiO3 ilmenite at high pressure. J Geophys Res 107 B11, 2267. doi:10.1029/2001JB000702

  • Karki BB, Wentzcovitch RM, de Gironcoli S, Baroni S (2000) Ab intio lattice dynamics of MgSiO3 perovskite at high pressure. Phys Rev B 62:14750–14756

    Article  Google Scholar 

  • Kato T, Ohtani E, Morishima H, Yamazaki D, Suzuki A, Suto M, Kubo T, Kikegawa T, Shimomura O (1995) In situ X ray observation of high-pressure phase transitions of MgSiO3 and thermal expansion of MgSiO3 perovskite at 25 GPa by double-stage multianvil system. J Geophys Res 100:20475–20481

    Article  Google Scholar 

  • Kojitani H, Katsura T, Akaogi M (2007) Aluminum substitution mechanisms in perovskite-type MgSiO3: an investigation by Rietveld analysis. Phys Chem Minerals 34:257–267

    Article  Google Scholar 

  • Kuroda K, Irifune T, Inoue T, Nishiyama N, Morishita M, Funakoshi, Utsumi W (2000) Determination of the phase boundary between ilmenite and perovskite in MgSiO3 by in situ X-ray diffraction and quench experiments. Phys Chem Minerals 27:523–532

    Article  Google Scholar 

  • Lashley JC, Hundley MF, Migliori A, Sarrao JL, Pagliuso PG, Darling TW, Jaime M, Cooley JC, Hults WL, Morales L, Thoma DJ, Smith JL, Boerio-Goates J, Woodfield BF, Stewart GR, Fisher RA, Phillips NE (2003) Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics 43:369–378

    Article  Google Scholar 

  • Lu R, Hofmeister AM, Wang Y (1994) Thermodynamic properties of ferromagnesium silicate perovskites from vibrational spectroscopy. J Geophys Res 99:11795–11804

    Article  Google Scholar 

  • Matsui M, Nishiyama N (2002) Comparison between the Au and MgO pressure calibration standards at high temperature. Geophys Res Lett 29. doi:10.1029/2001/GL014161

  • McMillan PF, Ross NL (1987) Heat capacity calculations for Al2O3 corundum and MgSiO3 ilmenite. Phys Chem Minerals 14:225–234

    Article  Google Scholar 

  • Navrotsky A (1980) Lower mantle phase transitions may generally have negative pressure–temperature slopes. Geophys Res Lett 7:709–711

    Article  Google Scholar 

  • Oganov AR, Price GD (2005) Ab initio thermodynamics of MgSiO3 perovskite at high pressures and temperatures. J Chem Phys 122:124501 1–6

    Google Scholar 

  • Oganov AR, Brodholt JP, Price GD (2000) Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite. Phys Earth Planet Inter 122:277–288

    Article  Google Scholar 

  • Ono S, Katsura T, Ito E, Kanzaki M, Yoneda A, Walter MJ, Urakawa S, Utsumi W, Funakoshi K (2001) In situ observation of ilmenite–perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett 28:835–838

    Article  Google Scholar 

  • Reynard B, Rubie DC (1996) High-pressure, high-temperature Raman spectroscopic study of ilmenite-type MgSiO3. Am Mineral 81:1092–1096

    Google Scholar 

  • Saxena SK (1996) Earth mineralogical model: Gibbs free energy minimization computation in the system MgO–FeO–SiO2. Geochim Cosmochim Acta 60:2379–2395

    Article  Google Scholar 

  • Saxena SK, Chatterjee N, Fei Y, Shen G (1993) Thermodynamic data on oxides and silicates. Springer, Berlin, 428pp

  • Speziale S, Zha C, Duffy TS, Hemley RJ, Mao HK (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure–volume–temperature equation of state. J Geophys Res 106:515–528

    Article  Google Scholar 

  • Takei H, Hosoya S, Ozima M (1984) Synthesis of large single crystals of silicates and titanates. In: Sunagawa I (ed) Materials science of the earth’s interior. Terra Sci Publ Co, Tokyo pp 107–130

    Google Scholar 

  • Tsuchiya J, Tsuchiya T, Wentzcovitch RM (2005) Vibrational and thermodynamic properties of MgSiO3 postperovskite. J Geophys Res 110 B02204. doi:10.1029/2004JB003409

  • Wang Y, Uchida T, Zhang J, Rivers ML, Sutton SR (2004) Thermal equation of state of akimotoite MgSiO3 and effects of the akimotoite–garnet transformation on seismic structure near the 660 km discontinuity. Phys Earth Planet Inter 143–144:57–80

    Article  Google Scholar 

  • Watanabe H (1982) Thermochemical properties of synthetic high-pressure compounds relevant to the earth’s mantle. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center for Academic Publications Japan, Tokyo, pp 441–464

    Google Scholar 

  • Wentzcovitch RM, Stixrude L, Karki BB, Kiefer B (2004) Akimotoite to perovskite phase transition in MgSiO3. Geophys Res Lett 31 L10611. doi:10.1029/2004GL019704

  • Yeganeh-Haeri A (1994) Synthesis and reinvestigation of the elastic properties of single-crystal magnesium silicate perovskite. Phys Earth Planet Inter 87:111–121

    Article  Google Scholar 

  • Yong W, Dachs E, Withers AC, Essene EJ (2006) Heat capacity and phase equilibria of hollandite polymorph of KAlSi3O8. Phys Chem Minerals 33:167–177

    Article  Google Scholar 

  • Yong W, Dachs E, Withers AC, Essene EJ (2007) Heat capacity of γ-Fe2SiO4 between 5 and 300 K and derived thermodynamic properties. Phys Chem Minerals 34:121–127

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Ozima for kindly providing orthoenstatite crystals, and to T. Tsuchiya and J. Tsuchiya for discussion and sending us numerical data of heat capacities of MgSiO3 perovskite in their paper. We thank T. Ikeda and an anonymous reviewer for constructive comments, and M. Matsui for editorial handling. This work was supported in part with the Grants-in-Aid (Nos. 1520404 and 19340166 to M.A.) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akaogi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akaogi, M., Kojitani, H., Morita, T. et al. Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite. Phys Chem Minerals 35, 287–297 (2008). https://doi.org/10.1007/s00269-008-0222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0222-x

Keywords

Navigation