Skip to main content

Advertisement

Log in

In search of the mixed derivative ∂2 M/∂PT (M = G, K): joint analysis of ultrasonic data for polycrystalline pyrope from gas- and solid-medium apparatus

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Elastic wave velocities for dense (99.8% of theoretical density) isotropic polycrystalline specimens of synthetic pyrope (Mg3Al2Si3O12) were measured to 1,000 K at 300 MPa by the phase comparison method of ultrasonic interferometry in an internally heated gas-medium apparatus. The temperature derivatives of the elastic moduli [(∂Ks/∂T) P  = −19.3(4); (∂G/∂T) P  = −10.4(2) MPa K−1] measured in this study are consistent with previous acoustic measurements on both synthetic polycrystalline pyrope in a DIA-type cubic anvil apparatus (Gwanmesia et al. in Phys Earth Planet Inter 155:179–190, 2006) and on a natural single crystal by the rectangular parallelepiped resonance (RPR; Suzuki and Anderson in J Phys Earth 31:125–138, 1983) method but |(∂Ks/∂T) P | is significantly larger than from a Brillouin spectroscopy study of single-crystal pyrope (Sinogeikin and Bass in Phys Earth Planet Inter 203:549–555, 2002). Alternative approaches to the retrieval of mixed derivatives of the elastic moduli from joint analysis of data from this study and from the solid-medium data of Gwanmesia et al. in Phys Earth Planet Inter 155:179–190 (2006) yield ∂2 G/∂PT = [0.07(12), 0.20(14)] × 10−3 K−1 and ∂2 K S /∂PT = [−0.20(24), 0.22(26)] × 10−3 K−1, both of order 10−4 K−1 and not significantly different from zero. More robust inference of the mixed derivatives will require solid-medium acoustic measurements of precision significantly better than 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson OL, Isaak DG (1995) Elastic constants of mantle minerals at high temperatures In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. AGU, Washington, pp 64–97

  • Armbruster TC, Geiger A, Lager GA (1992) Single-crystal X-ray structure and study of synthetic pyrope almandine garnets at 100 and 293 K. Am Min 77:512–521

    Google Scholar 

  • Chen G, Liebermann RC, Weidner DJ (1998) Elasticity of single crystal MgO to 8 Gigapascals and 1,600 Kelvin. Science 280:1913–1916

    Article  Google Scholar 

  • Chen G, Cooke JA Jr, Gwanmesia GD, Liebermann RC (1999) Elastic wave velocities of Mg3Al2Si3O12-pyrope garnet to 10 GPa. Am Min 84:384–388

    Google Scholar 

  • Gasparik T (1990) Phase relations in the transition zone. J Geophys Res 95:15751–15769

    Google Scholar 

  • Gasparik T (1992) Melting experiments on the enstatite–pyrope join at 80–152 kbar. J Geophys Res 97:15181–15188

    Google Scholar 

  • Gwanmesia GD, Liebermann RC (1992) Polycrystals of high pressure phases of mantle minerals: hot-pressing and characterization of physical properties. In: Syono Y, Manghnani MH (eds) High-pressure research: application to the earth and planetary sciences. TERRAPUB, Tokyo/American Geophysical Union, Washington, DC, 117–135

  • Gwanmesia GD, Liebermann RC, Guyot F (1990) Hot-pressing and characterization of polycrystals of β-Mg2SiO4 for acoustic velocity measurements. Geophys Res Lett 17:1331–1334

    Google Scholar 

  • Gwanmesia GD, Li B, Liebermann RC (1993) Hot pressing of high pressure phases of mineral phases of mantle minerals in multi anvil apparatus. PAGEOPH 141:467–484

    Article  Google Scholar 

  • Gwanmesia GD, Zhang J, Darling K, Kung J, Li B, Wang L, Neuville D, Liebermann RC (2006) Elasticity of polycrystalline pyrope (Mg3Al2Si3O12) to 9  GPa and 1,000°C. Phys Earth Planet Inter 155:179–190

    Article  Google Scholar 

  • Isaak DG (1993) The mixed PT derivatives of elastic moduli and implications on extrapolating throughout Earth’s mantle. Phys Earth Planet Inter 80:347–348

    Article  Google Scholar 

  • Jackson I, Rigden SM (1996) Analysis of P–V–T data: constraints on the thermoelastic properties of high-pressure minerals. Phys Earth Planet Inter 96:85–112

    Article  Google Scholar 

  • Jackson I, Niesler H, Weidner DJ (1981) Explicit correction of ultrasonically determined elastic wave velocities for transducer-bond phase shift. J Geophys Res 86:3736–3748

    Google Scholar 

  • Jackson I, Webb S, Weston L, Boness D (2005) Frequency dependence of the elastic wave speeds at high temperature: a direct experimental demonstration. Phys Earth Planet Inter 148:85–96

    Article  Google Scholar 

  • Kawai N, Endo S (1970) The generation of ultrahigh hydrostatic pressures by a split-sphere apparatus. Rev Sci Instrum 41:1178–1181

    Article  Google Scholar 

  • Kawai N, Togaya M, Onodera A (1973) A new device for pressure vessels. Proc Jpn Acad 49:623–626

    Google Scholar 

  • Kung J, Li B, Weidner DJ, Zhang J, Liebermann RC (2002) Elasticity of (Mg0.83, Fe0.17)O ferropericlase at high pressure: ultrasonic measurements in conjunction with X-radiation techniques. Earth Planet Sci Lett 203:227–566

    Article  Google Scholar 

  • Leitner BJ, Weidner DJ, Liebermann RC (1980) Elasticity of single crystal pyrope and implications for garnet solid solution series. Phys Earth Planet Inter 22:111–121

    Article  Google Scholar 

  • Li B, Zhang J (2005) Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle. Phys Earth Planet Inter 151:143–154

    Google Scholar 

  • Liu W, Kung J, B Li (2005) Elasticity of San Carlos olivine to 8 GPa and 1,073 K. Geophys Res Lett 32:L16301

    Article  Google Scholar 

  • Niesler H, Jackson I (1989) Pressure derivatives of elastic wave velocities from ultrasonic interferometric measurements on jacketed polycrystals. J Acoust Soc Am 86:1573–1585

    Article  Google Scholar 

  • Rigden SM, Gwanmesia GD, Jackson I, Liebermann RC (1992) Progress in high pressure ultrasonic interferometry: the pressure dependence of elasticity of Mg2SiO4 polymorphs and constraints on the composition of the transition zone of the Earth’s mantle. In: Syono Y, Manghnani MH (eds) High-pressure research: application to the earth and planetary sciences. TERRAPUB, Tokyo/American Geophysical Union, Washington, DC 167–182

  • Rigden SM, Gwanmesia GD, Liebermann RC (1994) Elastic wave velocities of a pyrope–majorite garnet to 3 Gpa. Phys Earth Planet Inter 86:35–44

    Article  Google Scholar 

  • Sinelnikov YD, Chen G, Liebermann RC (2004) Dual mode ultrasonic interferometry in multi-anvil, high-pressure apparatus using single-crystal olivine as the pressure standard. Int J High Press Res 24:183–191

    Article  Google Scholar 

  • Sinogeikin SV, Bass JD (2000) Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Phys Earth Planet Inter 120:43–62

    Article  Google Scholar 

  • Sinogeikin SV, Bass JD (2002) Elasticity of pyrope and majorite–pyrope solid solutions to high temperatures. Phys Earth Planet Inter 203:549–555

    Google Scholar 

  • Spetzler HA (1970) Equation of state of polycrystalline and single crystal MgO to 8 kilobars and 800 K. Geophys Res 75:2073–2087

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantle minerals: 1. Physical properties. Geophys J Int 162:610–632

    Article  Google Scholar 

  • Suzuki I, Anderson OL (1983) Elasticity and thermal expansion of a natural garnet up to 1,000 K. J Phys Earth 31:125–138

    Google Scholar 

  • Wang Y, Weidner DJ, Zhang J, Gwanmesia GD, Liebermann RC (1998) Thermal equation of state of garnets along the pyrope–majorite join. Phys Earth Planet Inter 105:59–71

    Article  Google Scholar 

  • Yagi T (2001) KAWAI-type apparatus. Rev High Press Sci Technol 11:171

    Google Scholar 

Download references

Acknowledgments

We thank Craig Saint for assistance with laboratory work. This research was supported by funding from the Australian Research Council (LX0348106) and partially by a NSF grant (INT 02-33849) to R. C. Liebermann for a collaborative research program with the Australian National University. We thank S. Jacobsen for a thorough and constructive review of the original version of this paper. This is Mineral Physics Institute Publication No. 368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Gwanmesia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gwanmesia, G.D., Jackson, I. & Liebermann, R.C. In search of the mixed derivative ∂2 M/∂PT (M = G, K): joint analysis of ultrasonic data for polycrystalline pyrope from gas- and solid-medium apparatus. Phys Chem Minerals 34, 85–93 (2007). https://doi.org/10.1007/s00269-006-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0130-x

Keywords

Navigation