Skip to main content

Advertisement

Log in

Male Patients may be More Vulnerable to Acute Kidney Injury After Colorectal Surgery in an Enhanced Recovery Program: A Propensity Score Matching Analysis

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Although many reports have shown that enhanced recovery after surgery (ERAS) programs improve the perioperative outcomes of patients undergoing colorectal surgery, the prevalence of early acute kidney injury (AKI) after surgery in such patients requires attention. Protective roles of the female sex in terms of chronic kidney disease and progression of ischemic renal injury have been described in many studies. We thus explored whether a sex difference was evident in terms of postoperative AKI in a colorectal ERAS setting.

Methods

From January 2017 to August 2019, 453 patients underwent laparoscopic colorectal cancer resection in an enhanced recovery program. Of these, 217 female patients were propensity score (PS)-matched with 236 male patients. Then, 215 patients of either sex were compared in terms of postoperative renal function and complications.

Results

Among the PS-matched patients, the incidence of AKI was significantly higher in male than female patients (24.2% vs. 9.8%, P < 0.001). Male patients also exhibited a greater reduction in the postoperative estimated glomerular filtration rate, compared with female patients. The male sex was associated with an approximately threefold increase in the risk of AKI. The rate of surgical complications was significantly higher in male than female patients.

Conclusions

Caution must be taken to prevent postoperative AKI in patients (particularly males) participating in colorectal ERAS programs. The mechanism underlying the sex difference remains unclear. Additional studies are required to determine whether male patients require perioperative management that differs from that of females, to prevent postoperative AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gustafsson UO, Scott MJ, Hubner M et al (2019) Guidelines for perioperative care in elective colorectal surgery: enhanced recovery after surgery (ERAS((R))) society recommendations: 2018. World J Surg 43:659–695. https://doi.org/10.1007/s00268-018-4844-y

    Article  CAS  PubMed  Google Scholar 

  2. Basse L, Raskov HH, Jakobsen DH, Sonne E et al (2002) Accelerated postoperative recovery programme after colonic resection improves physical performance, pulmonary function and body composition. Br J Surg 89:446–453

    CAS  PubMed  Google Scholar 

  3. Gustafsson UO, Hausel J, Thorell A, Ljungqvist O et al (2011) Adherence to the enhanced recovery after surgery protocol and outcomes after colorectal cancer surgery. Arch Surg 146:571–577

    PubMed  Google Scholar 

  4. Khoo CK, Vickery CJ, Forsyth N, Forsyth N, Vinall NS et al (2007) A prospective randomized controlled trial of multimodal perioperative management protocol in patients undergoing elective colorectal resection for cancer. Ann Surg 245:867–872

    PubMed  PubMed Central  Google Scholar 

  5. Wind J, Polle SW, Jin PHPFK, Dejong CHC et al (2006) Systematic review of enhanced recovery programmes in colonic surgery. Br J Surg 93:800–809

    CAS  PubMed  Google Scholar 

  6. Marcotte JH, Patel K, Desai R et al (2018) Acute kidney injury following implementation of an enhanced recovery after surgery (ERAS) protocol in colorectal surgery. Int J Colorectal Dis 33:1259–1267

    PubMed  Google Scholar 

  7. Koerner CP, Lopez-Aguiar AG, Zaidi M et al (2019) Caution: increased acute kidney injury in enhanced recovery after surgery (ERAS) protocols. Am Surg 85:156–161

    PubMed  Google Scholar 

  8. Grass F, Lovely JK, Crippa J et al (2019) Early acute kidney injury within an established enhanced recovery pathway: uncommon and transitory. World J Surg 43:1207–1215. https://doi.org/10.1007/s00268-019-04923-1

    Article  PubMed  Google Scholar 

  9. Kheterpal S, Tremper KK, Heung M, Rosenberg AL et al (2009) Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology 110:505–515

    PubMed  Google Scholar 

  10. Shim JW, Kim KR, Jung Y et al (2020) Role of intraoperative oliguria in risk stratification for postoperative acute kidney injury in patients undergoing colorectal surgery with an enhanced recovery protocol: a propensity score matching analysis. PLoS ONE 15:e0231447

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shim JW, Kwak J, Roh K et al (2020) Impact of intraoperative zero-balance fluid therapy on the occurrence of acute kidney injury in patients who had undergone colorectal cancer resection within an enhanced recovery after surgery protocol: a propensity score matching analysis. Int J Colorectal Dis 35:1537–1548

    PubMed  Google Scholar 

  12. Longo WE, Virgo KS, Johnson FE et al (2000) Risk factors for morbidity and mortality after colectomy for colon cancer. Dis Colon Rectum 43:83–91

    CAS  PubMed  Google Scholar 

  13. Thakar CV, Yared JP, Worley S et al (2003) Renal dysfunction and serious infections after open-heart surgery. Kidney Int 64:239–246

    PubMed  Google Scholar 

  14. Lafrance J-P, Miller DR (2010) Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol: JASN 21:345–352

    PubMed  Google Scholar 

  15. Reckelhoff JF, Samson WK (2015) Sex and gender differences in cardiovascular, renal and metabolic diseases. Am J Physiol Regul, Integr Comp Physiol 309:R1057–R1059

    CAS  Google Scholar 

  16. Intapad S, Ojeda NB, Dasinger JH, Alexander BT et al (2014) Sex differences in the developmental origins of cardiovascular disease. Physiology (Bethesda) 29:122–132

    CAS  Google Scholar 

  17. Tanaka R, Tsutsui H, Ohkita M, Takaoka M et al (2013) Sex differences in ischemia/reperfusion-induced acute kidney injury are dependent on the renal sympathetic nervous system. Eur J Pharmacol 714:397–404

    CAS  PubMed  Google Scholar 

  18. Neugarten J, Acharya A, Silbiger SR (2000) Effect of gender on the progression of nondiabetic renal disease. J Am Soc Nephrol 11:319

    CAS  PubMed  Google Scholar 

  19. Dubey RK, Jackson EK (2001) Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol 280:F365-388

    CAS  PubMed  Google Scholar 

  20. Neugarten J (2002) Gender and the progression of renal disease. J Am Soc Nephrol 13:2807

    PubMed  Google Scholar 

  21. Neugarten J, Golestaneh L (2013) Gender and the prevalence and progression of renal disease. Adv Chronic Kidney Dis 20:390–395

    PubMed  Google Scholar 

  22. Fekete A, Vannay A, Vér A et al (2004) Sex differences in the alterations of Na(+), K(+)-ATPase following ischaemia-reperfusion injury in the rat kidney. J Physiol 555:471–480

    CAS  PubMed  Google Scholar 

  23. Fekete A, Vannay A, Vér A, Rusai K et al (2006) Sex differences in heat shock protein 72 expression and localization in rats following renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 291:F806-811

    CAS  PubMed  Google Scholar 

  24. Hutchens MP, Fujiyoshi T, Komers R, Herson PS et al (2012) Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo. Am J Physiol Renal Physiol 303:F377-385

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang KP, Lee JE, Lee AS et al (2014) Effect of gender differences on the regulation of renal ischemia-reperfusion-induced inflammation in mice. Mol Med Rep 9:2061–2068

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Müller V, Losonczy G, Heemann U, Vannay A et al (2002) Sexual dimorphism in renal ischemia-reperfusion injury in rats: possible role of endothelin. Kidney Int 62:1364–1371

    PubMed  Google Scholar 

  27. Hur M, Park SK, Yoo S et al (2019) The association between intraoperative urine output and postoperative acute kidney injury differs between partial and radical nephrectomy. Sci Rep 9:760

    PubMed  PubMed Central  Google Scholar 

  28. Kher A, Meldrum KK, Wang M, Tsai BM et al (2005) Cellular and molecular mechanisms of sex differences in renal ischemia-reperfusion injury. Cardiovasc Res 67:594–603

    CAS  PubMed  Google Scholar 

  29. Kim MK, Kim J-G, Lee G et al (2019) Comparison of the effects of an ERAS program and a single-port laparoscopic surgery on postoperative outcomes of colon cancer patients. Sci Rep 9:11998

    PubMed  PubMed Central  Google Scholar 

  30. Orbegozo Cortes D, Gamarano Barros T, Njimi H et al (2015) Crystalloids versus colloids: exploring differences in fluid requirements by systematic review and meta-regression. Anesth Analg 120:389–402

    CAS  PubMed  Google Scholar 

  31. Khwaja A (2012) KDIGO Clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120:c179–c184

    PubMed  Google Scholar 

  32. Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    CAS  PubMed  Google Scholar 

  33. Stevens PE, Levin A (2013) Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158:825–830

    PubMed  Google Scholar 

  34. Clavien PA, Barkun J, de Oliveira ML et al (2009) The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg 250:187–196

    Google Scholar 

  35. Dubey RK, Jackson EK, Keller PJ, Imthurn B et al (2001) Estradiol metabolites inhibit endothelin synthesis by an estrogen receptor-independent mechanism. Hypertension 37:640–644

    CAS  PubMed  Google Scholar 

  36. Wilhelm SM, Stowe NT, Robinson AV, Schulak JA et al (2001) The use of the endothelin receptor antagonist, tezosentan, before or after renal ischemia protects renal function. Transplantation 71:211–216

    CAS  PubMed  Google Scholar 

  37. Lane PH, Snelling DM, Hollman A, Langer WJ et al (2001) Puberty permits increased expression of renal transforming growth factor-beta1 in experimental diabetes. Pediatr Nephrol 16:1033–1039

    CAS  PubMed  Google Scholar 

  38. Blush J, Lei J, Ju W, Silbiger S et al (2004) Estradiol reverses renal injury in Alb/TGF-beta1 transgenic mice. Kidney Int 66:2148–2154

    CAS  PubMed  Google Scholar 

  39. Fisher ND, Ferri C, Bellini C, Santucci A et al (1997) Age, gender, and non-modulation a sexual dimorphism in essential hypertension. Hypertension 29:980–985

    CAS  PubMed  Google Scholar 

  40. Miller JA, Anacta LA, Cattran DC (1999) Impact of gender on the renal response to angiotensin II. Kidney Int 55:278–285

    CAS  PubMed  Google Scholar 

  41. Moxley G, Stern AG, Carlson P, Estrada E et al (2004) Premenopausal sexual dimorphism in lipopolysaccharide-stimulated production and secretion of tumor necrosis factor. J Rheumatol 31:686–694

    CAS  PubMed  Google Scholar 

  42. Posma E, Moes H, Heineman MJ, Faas MM et al (2004) The effect of testosterone on cytokine production in the specific and non-specific immune response. Am J Reprod Immunol 52:237–243

    PubMed  Google Scholar 

  43. Reckelhoff JF, Hennington BS, Moore AG, Blanchard EJ et al (1998) Gender differences in the renal nitric oxide (NO) system: dissociation between expression of endothelial NO synthase and renal hemodynamic response to NO synthase inhibition. Am J Hypertens 11:97–104

    CAS  PubMed  Google Scholar 

  44. Neugarten J, Ding Q, Friedman A, Lei J et al (1997) Sex hormones and renal nitric oxide synthases. J Am Soc Nephrol 8:1240–1246

    CAS  PubMed  Google Scholar 

  45. Park KM, Cho HJ, Bonventre JV (2005) Orchiectomy reduces susceptibility to renal ischemic injury: a role for heat shock proteins. Biochem Biophys Res Commun 328:312–317

    CAS  PubMed  Google Scholar 

  46. Hutchens MP, Dunlap J, Hurn PD, Jarnberg PO et al (2008) Renal ischemia: does sex matter? Anesth Analg 107:239–249

    PubMed  Google Scholar 

  47. Iakovou I, Dangas G, Mehran R, Lansky AJ et al (2003) Impact of gender on the incidence and outcome of contrast-induced nephropathy after percutaneous coronary intervention. J Invasive Cardiol 15:18–22

    PubMed  Google Scholar 

  48. Bell S, Dekker FW, Vadiveloo T et al (2015) Risk of postoperative acute kidney injury in patients undergoing orthopaedic surgery—development and validation of a risk score and effect of acute kidney injury on survival: observational cohort study. BMJ 351:h5639

    PubMed  PubMed Central  Google Scholar 

  49. Long TE, Helgason D, Helgadottir S et al (2016) Acute kidney injury after abdominal surgery: incidence risk factors, and outcome. Anesth Analg 122:1912–1920

    PubMed  Google Scholar 

  50. Metcalfe PD, Meldrum KK (2006) Sex differences and the role of sex steroids in renal injury. J Urol 176:15–21

    CAS  PubMed  Google Scholar 

  51. Rollins KE, Lobo DN (2016) Intraoperative goal-directed fluid therapy in elective major abdominal surgery: a meta-analysis of randomized controlled trials. Ann Surg 263:465–476

    PubMed  PubMed Central  Google Scholar 

  52. Myles PS, Bellomo R, Corcoran T et al (2018) Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med 378:2263–2274

    PubMed  Google Scholar 

  53. Mizota T, Yamamoto Y, Hamada M et al (2017) Intraoperative oliguria predicts acute kidney injury after major abdominal surgery. Br J Anaesth 119:1127–1134

    CAS  PubMed  Google Scholar 

  54. Liu Z, Yang M, Zhao ZX et al (2018) Current practice patterns of preoperative bowel preparation in colorectal surgery: a nation-wide survey by the Chinese Society of Colorectal Cancer. World J Surg Oncol 16:134. https://doi.org/10.1186/s12957-018-1440-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors thank Bo-Kyoung Kim and Eun-Suk Kim (Anesthesia Nursing Unit, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea) for participation in our study.

Funding

No external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Suk Chae.

Ethics declarations

Conflict of interest

No author has any conflict of interest regarding the publication of this article.

Informed consent

Informed consent was not required due to the retrospective nature of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, JW., Ro, H., Lee, C.S. et al. Male Patients may be More Vulnerable to Acute Kidney Injury After Colorectal Surgery in an Enhanced Recovery Program: A Propensity Score Matching Analysis. World J Surg 45, 1642–1651 (2021). https://doi.org/10.1007/s00268-021-06041-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-021-06041-3

Navigation