Skip to main content

Advertisement

Log in

Stem Cell Marker Expression in Early Stage Colorectal Cancer is Associated with Recurrent Intestinal Neoplasia

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Colorectal cancer (CRC) ranks second in cancer deaths worldwide and presents multiple management challenges, one of which is identifying high risk stage II disease that may benefit from adjuvant therapy. Molecular biomarkers, such as ones that identify stem cell activity, could better stratify high-risk cohorts for additional treatment.

Methods

To identify possible biomarkers of high-risk disease in early-stage CRC, a discovery set (n = 66) of advanced-stage tumors were immunostained with antibodies to stemness proteins (CD166, CD44, CD26, and LGR5) and then digitally analyzed. Using a second validation cohort (n = 54) of primary CRC tumors, we analyzed protein and gene expression of CD166 across disease stages, and extended our analyses to CD166-associated genes (LGR5, ASCL2, BMI1, POSTN, and VIM) by qRT-PCR.

Results

Stage III and metastatic CRC tumors highly expressed stem cell-associated proteins, CD166, CD44, and LGR5. When evaluated across stages, CD166 protein expression was elevated in advanced-stage compared to early-stage tumors. Notably, a small subset of stage I and II cancers harbored elevated CD166 protein expression, which correlated with development of recurrent cancer or adenomatous polyps. Gene expression analyses of CD166-associated molecules revealed elevated ASCL2 in primary tumors from patients who recurred.

Conclusions

We identified a protein signature prognostic of aggressive disease in early stage CRC. Stem cell-associated protein and gene expression identified a subset of early-stage tumors associated with cancer recurrence and/or subsequent adenoma formation. Signatures for stemness offer promising fingerprints for stratifying early-stage patients at high risk of recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA: a cancer. J Clin 68:7–30

    Google Scholar 

  2. Vatandoust S, Price TJ, Karapetis CS (2015) Colorectal cancer: Metastases to a single organ. World J Gastroenterol 21:11767–11776

    PubMed  PubMed Central  Google Scholar 

  3. Benson AB 3rd, Schrag D, Somerfield MR et al (2004) american society of clinical oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol : Off J Am Soc Clin Oncol 22:3408–3419

    Google Scholar 

  4. Dotan E, Cohen SJ (2011) Challenges in the management of stage II colon cancer. Semin Oncol 38:511–520

    PubMed  PubMed Central  Google Scholar 

  5. Gray R, Barnwell J, McConkey C et al (2007) Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 370:2020–2029

    PubMed  Google Scholar 

  6. Varghese A (2015) Chemotherapy for Stage II Colon Cancer. Clin Colon Rectal Surg 28:256–261

    PubMed  PubMed Central  Google Scholar 

  7. Manfredi S, Bouvier AM, Lepage C et al (2006) Incidence and patterns of recurrence after resection for cure of colonic cancer in a well defined population. Br J Surg 93:1115–1122

    CAS  PubMed  Google Scholar 

  8. Bockelman C, Engelmann BE, Kaprio T et al (2015) Risk of recurrence in patients with colon cancer stage II and III: a systematic review and meta-analysis of recent literature. Acta Oncol (Stockholm, Sweden) 54:5–16

    Google Scholar 

  9. Snyder RA, Hu CY, Cuddy A et al (2018) Association between intensity of posttreatment surveillance testing and detection of recurrence in patients with colorectal cancer. JAMA 319:2104–2115

    PubMed  PubMed Central  Google Scholar 

  10. Kannarkatt J, Joseph J, Kurniali PC et al (2017) Adjuvant chemotherapy for stage ii colon cancer: a clinical dilemma. J Oncol Pract 13:233–241

    PubMed  Google Scholar 

  11. Benson AB 3rd, Venook AP, Al-Hawary MM et al (2018) NCCN guidelines insights: colon cancer, version 2.2018. J Natl Compr Cancer Netw: JNCCN 16:359–369

    Google Scholar 

  12. Schrag D, Rifas-Shiman S, Saltz L et al (2002) Adjuvant chemotherapy use for Medicare beneficiaries with stage II colon cancer. J Clin Oncol : Off J Am Soc Clin Oncol 20:3999–4005

    CAS  Google Scholar 

  13. Tournigand C, de Gramont A (2011) Chemotherapy: is adjuvant chemotherapy an option for stage II colon cancer? Nat Rev Clin Oncol 8:574

    CAS  PubMed  Google Scholar 

  14. Kneuertz PJ, Chang GJ, Hu CY et al (2015) Overtreatment of young adults with colon cancer: more intense treatments with unmatched survival gains. JAMA Surg 150:402–409

    PubMed  Google Scholar 

  15. Kusters M, Marijnen CA, van de Velde CJ et al (2010) Patterns of local recurrence in rectal cancer; a study of the Dutch TME trial. Eur J Surg Oncol: J Eur Soc Surg Oncol Br Assoc Surg Oncol 36:470–476

    CAS  Google Scholar 

  16. Gopalan S, Bose JC, Periasamy S (2015) Anastomotic recurrence of colon cancer-is it a local recurrence, a second primary, or a metastatic disease (local manifestation of systemic disease)? Indian J Surg 77:232–236

    PubMed  Google Scholar 

  17. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    CAS  PubMed  Google Scholar 

  18. Boman BM, Huang E (2008) Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J Clin Oncol 26:2828–2838

    PubMed  Google Scholar 

  19. Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198:281–293

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guan Y, Gerhard B, Hogge DE (2003) Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101:3142–3149

    CAS  PubMed  Google Scholar 

  21. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–673

    CAS  PubMed  Google Scholar 

  22. Chen W, Dong J, Haiech J et al (2016) Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem cells Int 2016:1740936

    PubMed  PubMed Central  Google Scholar 

  23. Vermeulen L, De Sousa EMF, van der Heijden M et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    CAS  PubMed  Google Scholar 

  24. Moon RT, Kohn AD, De Ferrari GV et al (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701

    CAS  PubMed  Google Scholar 

  25. Prieve MG, Moon RT (2003) Stromelysin-1 and mesothelin are differentially regulated by Wnt-5a and Wnt-1 in C57mg mouse mammary epithelial cells. BMC Dev Biol 3:2

    PubMed  PubMed Central  Google Scholar 

  26. Smith NR, Davies PS, Levin TG et al (2017) Cell adhesion molecule cd166/alcam functions within the crypt to orchestrate murine intestinal stem cell homeostasis. Cell Mol Gastroenterol Hepatol 3:389–409

    PubMed  PubMed Central  Google Scholar 

  27. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225–238

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schuijers J, Junker JP, Mokry M et al (2015) Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell 16:158–170

    CAS  PubMed  Google Scholar 

  30. Zhang F, Luo K, Rong Z et al (2017) Periostin upregulates wnt/beta-catenin signaling to promote the osteogenesis of CTLA4-modified human bone marrow-mesenchymal stem cells. Sci Rep 7:41634

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Satelli A, Hu J, Xia X et al (2016) Potential function of exogenous vimentin on the activation of wnt signaling pathway in cancer cells. J Cancer 7:1824–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye J, Liu S, Shang Y et al (2018) R-spondin1/Wnt-enhanced Ascl2 autoregulation controls the self-renewal of colorectal cancer progenitor cells. Cell Cycle (Georgetown, Tex) 17:1014–1025

    CAS  Google Scholar 

  33. Lamprecht M, Sabatini D, Carpenter A (2007) Cell Profiler™: free, versatile software for automated biological image analysis. Biotechniques 42:71–75

    CAS  PubMed  Google Scholar 

  34. Hessman CJ, Bubbers EJ, Billingsley KG et al (2012) Loss of expression of the cancer stem cell marker aldehyde dehydrogenase 1 correlates with advanced-stage colorectal cancer. Am J Surg 203:649–653

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Levin TG, Powell AE, Davies PS et al (2010) characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology 139:2072–2082.e2075

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith NR, Swain JR, Davies PS et al (2018) monoclonal antibodies reveal dynamic plasticity between Lgr5- and Bmi1-expressing intestinal cell populations. Cell Mol Gastroenterol Hepatol 6:79–96

    PubMed  PubMed Central  Google Scholar 

  37. Tournigand C, Andre T, Bonnetain F et al (2012) Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the multicenter international study of oxaliplatin, fluorouracil, and leucovorin in the adjuvant treatment of colon cancer trial. J Clin Oncol: Off J Am Soc Clin Oncol 30:3353–3360

    CAS  Google Scholar 

  38. Werling RW, Yaziji H, Bacchi CE et al (2003) CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 27:303–310

    PubMed  Google Scholar 

  39. Dalerba P, Sahoo D, Paik S et al (2016) CDX2 as a Prognostic Biomarker In stage II and stage III colon Cancer. N Engl J Med 374:211–222

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bae JM, Lee TH, Cho NY et al (2015) Loss of CDX2 expression is associated with poor prognosis in colorectal cancer patients. World J Gastroenterol 21:1457–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Malanchi I, Santamaria-Martinez A, Susanto E et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89

    PubMed  Google Scholar 

  42. Basu S, Haase G, Ben-Ze'ev A (2016) Wnt signaling in cancer stem cells and colon cancer metastasis [version 1; peer review: 3 approved]. F1000Research. https://doi.org/10.12688/f1000research.7579.1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jing F, Kim HJ, Kim CH et al (2015) Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. Int J Oncol 46:1582–1588

    CAS  PubMed  Google Scholar 

  44. Kobayashi Y, Kadoya T, Amioka A et al (2018) Wnt5a-induced cell migration is associated with the aggressiveness of estrogen receptor-positive breast cancer. Oncotarget 9:20979–20992

    PubMed  PubMed Central  Google Scholar 

  45. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    CAS  PubMed  Google Scholar 

  46. Weichert W (2004) ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol 57:1160–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Clevers H, Loh KM, Nusse R (2014) Stem cell signalling. An integral program for tissue renewal and regeneration: wnt signaling and stem cell control. Science 346:1248012

    PubMed  Google Scholar 

  48. Vakiani E, Shah RH, Berger MF et al (2017) Local recurrences at the anastomotic area are clonally related to the primary tumor in sporadic colorectal carcinoma. Oncotarget 8:42487–42494

    PubMed  PubMed Central  Google Scholar 

  49. Rosa I, Fidalgo P, Chaves P et al (2015) The co-localization of carcinomas and adenomas favors a regional field defect in the colon: an observational study. Int J Colorectal Dis 30:323–327

    PubMed  Google Scholar 

  50. Liska D, Stocchi L, Karagkounis G et al (2017) Incidence, patterns, and predictors of locoregional recurrence in colon cancer. Ann Surg Oncol 24:1093–1099

    PubMed  Google Scholar 

  51. Frambach P, Pucciarelli S, Perin A et al (2018) Metastatic pattern and new primary tumours after neoadjuvant therapy and surgery in rectal cancer. Colorectal Dis : Off J Assoc Coloproctology G B Irel 20:O326–o334

    CAS  Google Scholar 

  52. Kim SH, Park KH, Shin SJ et al (2018) CpG Island Methylator Phenotype and Methylation of Wnt Pathway Genes Together Predict Survival in Patients with Colorectal Cancer. Yonsei Med J 59:588–594

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kandimalla R, Linnekamp JF, van Hooff S et al (2017) Methylation of WNT target genes AXIN2 and DKK1 as robust biomarkers for recurrence prediction in stage II colon cancer. Oncogenesis 6:e308

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li C, Cai S, Wang X et al (2014) Hypomethylation-associated up-regulation of TCF3 expression and recurrence in stage II and III colorectal cancer. PLoS ONE 9:e112005

    PubMed  PubMed Central  Google Scholar 

  55. Lee MA, Park JH, Rhyu SY et al (2014) Wnt3a expression is associated with MMP-9 expression in primary tumor and metastatic site in recurrent or stage IV colorectal cancer. BMC Cancer 14:125

    PubMed  PubMed Central  Google Scholar 

  56. Leedham SJ, Chetty R (2016) Wnt disruption in colorectal polyps - the traditional serrated adenoma enters the fray. J Pathol 239:387–390

    PubMed  Google Scholar 

  57. Jubb AM, Chalasani S, Frantz GD et al (2006) Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene 25:3445–3457

    CAS  PubMed  Google Scholar 

  58. Kwon OH, Park JL, Baek SJ et al (2013) Aberrant upregulation of ASCL2 by promoter demethylation promotes the growth and resistance to 5-fluorouracil of gastric cancer cells. Cancer Sci 104:391–397

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Digestive Disease U01DK085525 (MHW); Knight Cancer Institute Pilot award (VLT); and the Knight Cancer Institute P30CA069533.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Liana Tsikitis or Melissa H. Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study. Study was approved by the Institutional Review Board from both institutions (OHSU and Kaiser Permanente) prior to conducting any review of archived tissue or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, B.S., Zarour, L.R., Wieghard, N. et al. Stem Cell Marker Expression in Early Stage Colorectal Cancer is Associated with Recurrent Intestinal Neoplasia. World J Surg 44, 3501–3509 (2020). https://doi.org/10.1007/s00268-020-05586-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-020-05586-z

Navigation