Skip to main content

Advertisement

Log in

CD51 correlates with the TGF-beta pathway and is a functional marker for colorectal cancer stem cells

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Colorectal cancer (CRC) is one of the top three most prevalent and deadly cancers. A cancer stem cell (CSC) sub-population that is characterized by the abilities of tumor initiation, self-renewal, metastasis and resistance to chemotherapy can suggest new therapeutic targets. However, no such sub-population has been conclusively identified for CRC, and we lack any marker to identify cells with all of the above characteristics. Here, we report that CD51+ CRC cells displayed greater sphere-forming and tumorigenic capacities, increased migratory and invasive potentials, and enhanced chemoresistance compared with CD51 CRC cells. CD51 knockdown reduced the side population, sphere formation, cell motility and inhibited tumor incidence and metastasis in an in vivo tumor model. Furthermore, CD51 could bind transforming growth factor beta (TGF-β) receptors, and that it upregulated TGF-β/Smad signaling. These results indicate that CD51 is a novel functional marker for colorectal CSCs which may provide an therapeutic target for the efficient elimination of colorectal CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zeuner A, Todaro M, Stassi G, De Maria R . Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 2014; 15: 692-–705.

    Article  CAS  PubMed  Google Scholar 

  2. Abetov D, Mustapova Z, Saliev T, Bulanin D . Biomarkers and signaling pathways of colorectal cancer stem cells. Tumor Biology 2015; 36: 1339–1353.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  4. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    Article  CAS  PubMed  Google Scholar 

  5. Liu S, Li N, Yu X, Xiao X, Cheng K, Hu J et al. Expression of intercellular adhesion molecule 1 by hepatocellular carcinoma stem cells and circulating tumor cells. Gastroenterology 2013; 144: 1031–1041. e10.

    Article  PubMed  Google Scholar 

  6. Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB Jl 2013; 27: 13–24.

    Article  CAS  Google Scholar 

  7. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 2010; 120: 3326–3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Todaro M, Perez AM, Scopelliti A, Medema JP, Stassi G . IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle 2008; 7: 309–313.

    Article  CAS  PubMed  Google Scholar 

  9. Gao W, Chen L, Ma Z, Du Z, Zhao Z, Hu Z et al. Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology 2013; 145: 636–646. e5.

    Article  CAS  PubMed  Google Scholar 

  10. Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 2014; 16: 1105–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan Q, Pan K, Wang Q, Weng D, Zhao J, Zheng H et al. Annexin A3 as a potential target for immunotherapy of liver cancer stem-like cells. Stem Cells 2014; 33: 354–366.

    Article  Google Scholar 

  12. Tang KH, Dai YD, Tong M, Chan YP, Kwan PS, Fu L et al. A CD90+ tumor-initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer. Cancer Res 2013; 73: 2322–2332.

    Article  CAS  PubMed  Google Scholar 

  13. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  14. Fang DD, Kim YJ, Lee CN, Aggarwal S, McKinnon K, Mesmer D et al. Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer 2010; 102: 1265–1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    Article  CAS  PubMed  Google Scholar 

  16. Su YJ, Lai HM, Chang YW, Chen GY, Lee JL . Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 2011; 30: 3186–3199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen M et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 2009; 124: 1312–1321.

    Article  CAS  PubMed  Google Scholar 

  18. Du L, Wang H, He L, Zhang J, Ni B, Wang X et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008; 14: 6751–6760.

    Article  CAS  PubMed  Google Scholar 

  19. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levin TG, Powell AE, Davies PS, Silk AD, Dismuke AD, Anderson EC et al. Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology 2010; 139: 2072–2082. e5.

    Article  CAS  PubMed  Google Scholar 

  21. Xu S, Wen Z, Jiang Q, Zhu L, Feng S, Zhao Y et al. CD58, a novel surface marker, promotes self-renewal of tumor-initiating cells in colorectal cancer. Oncogene 2014; 34: 1520–1531.

    Article  PubMed  Google Scholar 

  22. Emmink BL, Van Houdt WJ, Vries RG, Hoogwater FJH, Govaert KM, Verheem A et al. Differentiated human colorectal cancer cells protect tumor-initiating cells from irinotecan. Gastroenterology 2011; 141: 269–278.

    Article  CAS  PubMed  Google Scholar 

  23. Pang R, Law WL, Chu ACY, Poon JT, Lam CSC, Chow AKM et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 2010; 6: 603–615.

    Article  CAS  PubMed  Google Scholar 

  24. Wu Z, Wei D, Gao W, Xu Y, Hu Z, Ma Z et al. TPO-induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110+ tumor-initiating cells. Cell Stem Cell 2015; 17: 47–59.

    Article  CAS  PubMed  Google Scholar 

  25. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 2014; 14: 342–356.

    Article  CAS  PubMed  Google Scholar 

  26. Vermeulen L, Todaro M, de Sousa MF, Sprick MR, Kemper K, Perez AM et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 2008; 105: 13427–13432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  28. Gemei M, Mirabelli P, Di Noto R, Corbo C, Iaccarino A, Zamboli A et al. CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo. Cancer 2013; 119: 729–738.

    Article  CAS  PubMed  Google Scholar 

  29. Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG . Colorectal cancer stem cells. Stem Cells 2012; 30: 363–371.

    Article  CAS  PubMed  Google Scholar 

  30. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA . Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015; 25: 234–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hynes RO . Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.

    Article  CAS  PubMed  Google Scholar 

  32. Vogetseder A, Thies S, Ingold B, Roth P, Weller M, Schraml P et al. αv-Integrin isoform expression in primary human tumors and brain metastases. Int J Cancer 2013; 133: 2362–2371.

    Article  CAS  PubMed  Google Scholar 

  33. Ha SY, Shin J, Kim JH, Kang MS, Yoo HY, Kim HH et al. Overexpression of integrin v correlates with poor prognosis in colorectal cancer. J Clin Pathol 2014; 67: 576–581.

    Article  PubMed  Google Scholar 

  34. Waisberg J, De Souza VL, Affonso JR, Silva SR, Denadai MV, Margeotto FB et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res 2014; 34: 5599–5607.

    PubMed  Google Scholar 

  35. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–3182.

    Article  CAS  PubMed  Google Scholar 

  36. Yang L, Ren Y, Yu X, Qian F, Bian BS, Xiao HL et al. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol 2014; 27: 775–783.

    Article  CAS  PubMed  Google Scholar 

  37. Colak S, Zimberlin CD, Fessler E, Hogdal L, Prasetyanti PR, Grandela CM et al. Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death Differ 2014; 21: 1170–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17 A. J Exp Med 2013; 210: 2851–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang C, Xiong F, Dou J, Xue J, Zhan X, Shi F et al. Target therapy of multiple myeloma by PTX-NPs and ABCG2 antibody in a mouse xenograft model. Oncotarget 2015; 6: 27714–27724.

    PubMed  PubMed Central  Google Scholar 

  40. Ho MM, Ng AV, Lam S, Hung JY . Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67: 4827–4833.

    Article  CAS  PubMed  Google Scholar 

  41. Todaro M, Francipane MG, Medema JP, Stassi G . Colon cancer stem cells: promise of targeted therapy. Gastroenterology 2010; 138: 2151–2162.

    Article  CAS  PubMed  Google Scholar 

  42. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng EE et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 2015; 525: 256–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Savagner P . Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 2001; 23: 912–923.

    Article  CAS  PubMed  Google Scholar 

  44. Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP et al. Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5). J Med Chem 2002; 45: 999–1001.

    Article  CAS  PubMed  Google Scholar 

  45. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K . Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 2009; 5: 504–514.

    Article  CAS  PubMed  Google Scholar 

  46. Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, MacSwords J et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 2010; 6: 421–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . The mammary progenitor marker CD61/3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68: 7711–7717.

    Article  CAS  PubMed  Google Scholar 

  48. Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J, Elliott KC et al. An integrin β3–KRAS–RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol 2014; 16: 457–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y et al. PDGFR and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 2013; 210: 1351–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang MH, Cai B, Tuo Y, Wang J, Zang ZJ, Tu X et al. Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Res 2014; 24: 1466–1485.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wersto RP, Liblit RL, Deitch D, Koss LG . Variability in DNA measurements in multiple tumor samples of human colonic carcinoma. Cancer 1991; 67: 106–115.

    Article  CAS  PubMed  Google Scholar 

  52. Yan M, Yang X, Wang L, Clark D, Zuo H, Ye D et al. Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Mol Cell Proteomics 2013; 12: 3271–3284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilson BJ, Schatton T, Frank MH, Frank NY . Colorectal cancer stem cells: biology and therapeutic implications. Curr Colorectal Cancer Rep 2011; 7: 128–135.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Park CY, Tseng D, Weissman IL . Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol Ther 2009; 17: 219–230.

    Article  CAS  PubMed  Google Scholar 

  55. Lu X, Lu D, Scully M, Kakkar V . The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy. Perspect Medicin Chem 2008; 2: 57–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oskarsson T, Batlle E, Massague J . Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 2014; 14: 306–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsai JH, Yang J . Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 2013; 27: 2192–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thien A, Prentzell MT, Holzwarth B, Klasener K, Kuper I, Boehlke C et al. TSC1 activates TGF-beta-Smad2/3 signaling in growth arrest and epithelial-to-mesenchymal transition. Dev Cell 2015; 32: 617–630.

    Article  CAS  PubMed  Google Scholar 

  59. Derynck R, Muthusamy BP, Saeteurn KY . Signaling pathway cooperation in TGF-beta-induced epithelial-mesenchymal transition. Curr Opin Cell Biol 2014; 31: 56–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25: 666–681.

    Article  CAS  PubMed  Google Scholar 

  61. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013; 19: 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  62. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96: 319–328.

    Article  CAS  PubMed  Google Scholar 

  63. Li W, Huang L, Lin W, Ke Q, Chen R, Lai X et al. Engraftable neural crest stem cells derived from cynomolgus monkey embryonic stem cells. Biomaterials 2015; 39: 75–84.

    Article  CAS  PubMed  Google Scholar 

  64. Hu Y, Smyth GK . ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  PubMed  Google Scholar 

  65. Ke Q, Li L, Cai B, Liu C, Yang Y, Gao Y et al. Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet 2013; 22: 2221–2233.

    Article  CAS  PubMed  Google Scholar 

  66. Wang J, Cai J, Huang Y, Ke Q, Wu B, Wang S et al. Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics. Oncogene 2016; 35: 3139–3150.

    Article  CAS  PubMed  Google Scholar 

  67. Song L, Gong H, Lin C, Wang C, Liu L, Wu J et al. Flotillin-1 promotes tumor necrosis factor-alpha receptor signaling and activation of NF-kappaB in esophageal squamous cell carcinoma cells. Gastroenterology 2012; 143: 995–1005. e12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2012CBA01302); the National Natural Science Foundation of China (81425016, 81270646); the Natural Science Foundation of Guangdong Province (S2013030013305, S20120011190, 2015A030312013); the Key Scientific and Technological Projects of Guangdong Province (2014B020226002, 2015B020226004, 2014B020228003, 2015B020228001); Key Scientific and Technological Program of Guangzhou City (201400000003-3, 201508020262, 201300000089); Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS, 2013).

Author contributions

JW, BZ, HW, JC, XS, YW, HL, WS and APX designed and performed experiments. HW analyzed results. JW, BZ, HW, WS and APX assembled results and wrote the paper. TW, ZC and YQ provided tools, patient specimens and edited the manuscript. All authors participated in critical revision of the manuscript for important intellectual content.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Song or A P Xiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, B., Wu, H. et al. CD51 correlates with the TGF-beta pathway and is a functional marker for colorectal cancer stem cells. Oncogene 36, 1351–1363 (2017). https://doi.org/10.1038/onc.2016.299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.299

  • Springer Nature Limited

This article is cited by

Navigation