Skip to main content

Advertisement

Log in

Overexpression and Interactions of Interleukin-10, Transforming Growth Factor β, and Vascular Endothelial Growth Factor in Esophageal Squamous Cell Carcinoma

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Sharing the role of immune suppression, interleukin-10 (IL-10), transforming growth factor β (TGF-β), and vascular endothelial growth factor (VEGF) are critical genes in several aspects of tumorigenesis. To elucidate the role of these cytokines in esophageal squamous cell carcinoma (ESCC), their relative mRNA expression in tumoral tissue compared with corresponding tumor-free tissue was evaluated.

Methods

A total of 49 patients with histologically confirmed ESCC were included in the study prior to any therapeutic interventions. Quantitative analysis of the mRNA expression was performed by real-time reverse transcription-polymerase chain reaction and the clinicopathologic associations were assessed.

Results

The mRNA of IL-10, VEGF, and TGF-β was frequently overexpressed in 53.2%, 44.9%, and 37.5% of ESCC patients, respectively. TGF-β was significantly co-expressed with IL-10 and with VEGF. Although VEGF was not independently associated with increased tumor size (p = 0.065), concomitant overexpression of VEGF with TGF-β was significantly correlated with increased size of the tumor (p < 0.05).

Conclusions

Overexpression of IL-10, TGF-β, and VEGF plays an important role in ESCC and consequently leads to the frequent event of immune evasion in ESCC. TGF-β is concomitantly overexpressed with IL-10 and with VEGF in ESCC. A stimulatory signal from TGF-β to VEGF is necessary for VEGF to promote tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sadjadi A, Nouraie M, Mohagheghi MA et al (2005) Cancer occurrence in Iran in 2002, an international perspective. Asian Pac J Cancer Prev 6:359–363

    PubMed  Google Scholar 

  2. Yang L, Parkin DM, Li L et al (2003) Time trends in cancer mortality in China: 1987–1999. Int J Cancer 106:771–783

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  PubMed  CAS  Google Scholar 

  4. Bates DO, Curry FE (1996) Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels. Am J Physiol 271:H2520–H2528

    PubMed  CAS  Google Scholar 

  5. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591

    Article  PubMed  CAS  Google Scholar 

  6. Huang CL, Liu D, Ishikawa S et al (2008) Wnt1 overexpression promotes tumour progression in non-small cell lung cancer. Eur J Cancer 44:2680–2688

    Article  PubMed  CAS  Google Scholar 

  7. Furlan D, Sahnane N, Carnevali I et al (2008) Up-regulation of the hypoxia-inducible factor-1 transcriptional pathway in colorectal carcinomas. Hum Pathol 39:1483–1494

    Article  PubMed  CAS  Google Scholar 

  8. Oh SY, Kwon HC, Kim SH et al (2008) Clinicopathologic significance of HIF-1alpha, p53, and VEGF expression and preoperative serum VEGF level in gastric cancer. BMC Cancer 8:123

    Google Scholar 

  9. Chen XY, Li JS, Liang QP et al (2008) Expression of PC cell-derived growth factor and vascular endothelial growth factor in esophageal squamous cell carcinoma and their clinicopathologic significance. Chin Med J (Engl) 121:881–886

    Google Scholar 

  10. Moses HL, Yang EY, Pietenpol JA (1990) TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247

    Article  PubMed  CAS  Google Scholar 

  11. Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641

    Article  PubMed  CAS  Google Scholar 

  12. Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171

    Article  PubMed  CAS  Google Scholar 

  13. Fontana A, Constam DB, Frei K et al (1992) Modulation of the immune response by transforming growth factor beta. Int Arch Allergy Immunol 99:1–7

    Article  PubMed  CAS  Google Scholar 

  14. Luwor RB, Kaye AH, Zhu JH (2008) Transforming growth factor-beta (TGF-β) and brain tumours. J Clin Neurosci 15:845–855

    Article  PubMed  CAS  Google Scholar 

  15. Fukai Y, Fukuchi M, Masuda N et al (2003) Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer 104:161–166

    Article  PubMed  CAS  Google Scholar 

  16. Villanueva A, Garcia C, Paules AB et al (1998) Disruption of the antiproliferative TGF-β signaling pathways in human pancreatic cancer cells. Oncogene 17:1969–1978

    Article  PubMed  CAS  Google Scholar 

  17. Grady WM, Myeroff LL, Swinler SE et al (1999) Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res 59:320–324

    PubMed  CAS  Google Scholar 

  18. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor (beta) in human disease. N Engl J Med 343:228

    Google Scholar 

  19. Volk H, Asadullah K, Gallagher G et al (2001) IL-10 and its homologs: important immune mediators and emerging immunotherapeutic targets. Trends Immunol 22:414–417

    Article  PubMed  CAS  Google Scholar 

  20. Wakkach A, Cottrez F, Groux H (2000) Can interleukin-10 be used as a true immunoregulatory cytokine? Eur Cytokine Netw 11:153–160

    PubMed  CAS  Google Scholar 

  21. Kurte M, López M, Aguirre A et al (2004) A synthetic peptide homologous to functional domain of human IL-10 down-regulates expression of MHC class I and transporter associated with antigen processing 1/2 in human melanoma cells. J Immunol 173:1731–1737

    PubMed  CAS  Google Scholar 

  22. Kundu N, Dorsey R, Jackson MJ et al (1998) Interleukin-10 gene transfer inhibits murine mammary tumors and elevates nitric oxide. Int J Cancer 76:713–719

    Article  PubMed  CAS  Google Scholar 

  23. Kohno T, Mizukami H, Suzuki M et al (2003) Interleukin-10-mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer Res 63:5091–5094

    PubMed  CAS  Google Scholar 

  24. Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy: review of a new approach. Pharmacol Rev 55:241–269

    Article  PubMed  CAS  Google Scholar 

  25. Koliopanos A, Friess H, di Mola FF et al (2002) Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 26:420–427

    Article  PubMed  Google Scholar 

  26. Oka M, Hirose K, Iizuka N et al (1995) Cytokine mRNA expression patterns in human esophageal cancer cell lines. J Interferon Cytokine Res 15:1005–1009

    Article  PubMed  CAS  Google Scholar 

  27. Loges S, Clausen H, Reichelt U et al (2007) Determination of microvessel density by quantitative real-time PCR in esophageal cancer: correlation with histologic methods, angiogenic growth factor expression, and lymph node metastasis. Clin Cancer Res 13:76–80

    Article  PubMed  CAS  Google Scholar 

  28. Kapral M, Strzalka B, Kowalczyk M et al (2008) Transforming growth factor beta isoforms (TGF-beta1, TGF-beta2, TGF-beta3) messenger RNA expression in laryngeal cancer. Am J Otolaryngol 29:233–237

    Article  PubMed  CAS  Google Scholar 

  29. Diaz-Chavez J, Hernandez-Pando R, Lambert PF et al (2008) Down-regulation of transforming growth factor-beta type II receptor (TGF-betaRII) protein and mRNA expression in cervical cancer. Mol Cancer 7:3

    Article  PubMed  CAS  Google Scholar 

  30. Abe H, Yamanishi T, Mashidori T et al (2008) Significant association of interleukin 10 receptor mRNA levels with renal cell carcinoma metastasis. Biomed Res 29:19–25

    Article  PubMed  CAS  Google Scholar 

  31. Ohm JE, Gabrilovich DI, Sempowski GD et al (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101:4878–4886

    Article  PubMed  CAS  Google Scholar 

  32. Yang WF, Yu JM, Zuo WS et al (2006) Expression of CD80, CD86, TGF-beta1 and IL-10 mRNA in the esophageal carcinoma. Zhonghua Zhong Liu Za Zhi 28:762–765

    PubMed  CAS  Google Scholar 

  33. Kaklamani VG, Pasche B (2004) Role of TGF-beta in cancer and the potential for therapy and prevention. Expert Rev Anticancer Ther 4:649–661

    Article  PubMed  CAS  Google Scholar 

  34. Loskog A, Dzojic H, Vikman S et al (2004) Adenovirus CD40 ligand gene therapy counteracts immune escape mechanisms in the tumor microenvironment. J Immunol 172:7200–7205

    PubMed  CAS  Google Scholar 

  35. Nagata J, Kijima H, Hatanaka H et al (2002) Correlation between interleukin 10 and vascular endothelial growth factor expression in human esophageal cancer. Int J Mol Med 10:169–172

    PubMed  CAS  Google Scholar 

  36. Merogi AJ, Marrogi AJ, Ramesh R et al (1997) Tumor–host interaction: analysis of cytokines, growth factors, and tumor-infiltrating lymphocytes in ovarian carcinomas. Hum Pathol 28:321–331

    Article  PubMed  CAS  Google Scholar 

  37. D’Orazio TJ, Niederkorn JY (1998) A novel role for TGF-beta and IL-10 in the induction of immune privilege. J Immunol 160:2089–2098

    PubMed  Google Scholar 

  38. Li D, Zhang C, Song F et al (2009) VEGF regulates FGF-2 and TGF-beta1 expression in injury endothelial cells and mediates smooth muscle cells proliferation and migration. Microvasc Res 77:134–142

    Article  PubMed  CAS  Google Scholar 

  39. Wang XJ, Dong Z, Zhong XH et al (2008) Transforming growth factor-beta1 enhanced vascular endothelial growth factor synthesis in mesenchymal stem cells. Biochem Biophys Res Commun 365:548–554

    Article  PubMed  CAS  Google Scholar 

  40. Boström K, Zebboudj AF, Yao Y et al (2004) Matrix GLA protein stimulates VEGF expression through increased transforming growth factor-beta1 activity in endothelial cells. J Biol Chem 279:52904–52913

    Article  PubMed  CAS  Google Scholar 

  41. Benckert C, Jonas S, Cramer T et al (2003) Transforming growth factor beta 1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells. Cancer Res 63:1083–1092

    PubMed  CAS  Google Scholar 

  42. Ferrari G, Pintucci G, Seghezzi G et al (2006) VEGF, a prosurvival factor, acts in concert with TGF-beta1 to induce endothelial cell apoptosis. Proc Natl Acad Sci USA 103:17260–17265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant offered by the Vice Chancellor of Research, Mashhad University of Medical Sciences (grant 86729). We are grateful to Mr. Nekoui for his help in data analysis, our colleagues in the Division of Human Genetics for their technical assistance, and the personnel of the Department of Surgery, Omid Hospital for their assistance in gathering specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Abbaszadegan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gholamin, M., Moaven, O., Memar, B. et al. Overexpression and Interactions of Interleukin-10, Transforming Growth Factor β, and Vascular Endothelial Growth Factor in Esophageal Squamous Cell Carcinoma. World J Surg 33, 1439–1445 (2009). https://doi.org/10.1007/s00268-009-0070-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-009-0070-y

Keywords

Navigation