Skip to main content

Advertisement

Log in

Comparative Assessment of Environmental Flow Estimation Methods in a Mediterranean Mountain River

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The ecological integrity of rivers ultimately depends on flow regime. Flow degradation is especially prominent in Mediterranean systems and assessing environmental flows in modified rivers is difficult, especially in environments with poor hydrologic monitoring and data availability. In many Mediterranean countries, which are characterized by pronounced natural variability and low summer flows, water management actions usually focus on prescribing minimum acceptable flows estimated by hydrologic methods. In this study, a comparative assessment of environmental flow estimation methods is developed in a river with poorly monitored flows and limited understanding of past reference conditions. This assessment incorporates both a hydrologic and a fish habitat simulation effort that takes into consideration hydrologic seasonality in a Greek mountainous river. The results of this study indicate that especially in data scarce regions the utilization of biotic indicators through habitat models, may provide valuable information, beyond that achievable with hydrologic methods, for developing regional environmental flow criteria. Despite the widespread use of the method, challenges in transferability of fish habitat simulation provide undefined levels of uncertainty and may require the concurrent use of different assessment tools and site-specific study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acreman MC, Ferguson AJD (2010) Environmental flows and the European Water Framework Directive. Freshw Biol 55:32–48. doi:10.1111/j.1365-2427.2009.02181.x

    Article  Google Scholar 

  • Acreman M, Dunbar MJ (2004) Defining environmental river flow requirements—a review. Hydrol Earth Syst Sci 8:861–876. doi:10.5194/hess-8-861-2004

    Article  Google Scholar 

  • Alvarez-Cobelas M, Rojo C, Angeller DG (2005) Mediterranean limnology: current status, gaps and the future. J Limnol 64(1):13–29

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment, Part 1: model development. Am Water Resour Assoc 34:73–89. doi:10.1111/j.1752-1688.1998.tb05961.x

    Article  CAS  Google Scholar 

  • Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19. doi:10.1016/j.ecolmodel.2006.07.005

    Article  Google Scholar 

  • Ayllón D, Nicola GG, Parra I, Elvira B, Almodóvar A (2014) Spatio-temporal habitat selection shifts in brown trout populations under contrasting natural flow regimes. Ecohydrology 7(2):569–579. doi:10.1002/eco.1379

    Article  Google Scholar 

  • Barnes Jr. HH (1967) Roughness characteristics of natural channels. US Geol Surv Water Supply Pap 1849 7:219. doi:10.1016/0022-1694(69)90113-9

    Google Scholar 

  • Benejam Ll, Angermeier PL, Munné A, García-Berthou E (2010) Assessing effects of water abstraction on fish assemblages in Mediterranean streams. Freshw Biol 55:628–642. doi:10.1111/j.1365-2427.2009.02299.x

    Article  Google Scholar 

  • Bhamjee R, Lindsay JB, Cockburn J (2016) Monitoring ephemeral headwater streams: a paired-sensor approach. Hydrol Process 30:888–898. doi:10.1002/hyp.10677

    Article  Google Scholar 

  • Bovee KD (1982) A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper 12. U.S.D.I. Fish and Wildlife Service, Office of Biological Services. FWS/OBS-82/26. p 248

  • Bovee KD (1986) Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Instream Flow Information Paper #21 FWS/OBS-86/7

  • Bovee K, Lamb B, Bartholow J et al. (1998) Stream habitat analysis using the instream flow incremental methodology, Instream Flow Incremental Methodology. Information and Technology Report USGS/BRD/ITR-1998-0004. Fort Collins, CO: U.S. Geological Survey-BRD. p 130

  • Chow VT (1959) Open channel hydraulics. McGraw-Hill Book Company, New York

    Google Scholar 

  • Choi B, Choi SU, Kang H (2015) Transferability of monitoring data from neighboring streams in a physical habitat simulation. Water 7:4537–4551. doi:10.3390/w7084537

    Article  Google Scholar 

  • Conallin J, Boegh E, Jensen JK (2010) Instream physical habitat modelling types: an analysis as stream hydromorphological modelling tools for EU water resource managers. Int J River Basin Manag 8:93–107. doi:10.1080/15715121003715123

    Article  Google Scholar 

  • Cowan WL (1956) Estimating hydraulic roughness coefficients. Agric Eng 37:473–475

    Google Scholar 

  • Department of Water Affairs and Forestry (DWAF) (1997) White Paper on a National Water Policy for South Africa. Department of Water Affairs and Forestry, Pretoria, South Africa. https://www.dwa.gov.za/documents/Policies/nwpwp.pdf

  • Dyson M, Bergkamp G, John S (eds) (2003) Flow: the essentials of environmental flows. IUCN, Gland

  • Economou AN, Zogaris S, Vardakas L et al. (2016) Developing policy-relevant river fish monitoring in Greece: insights from a nationwide survey. Mediterr Mar Sci 171:302–322. doi:10.12681/mms.1585

    Article  Google Scholar 

  • European Commission (2015) Ecological flows in the implementation of the Water Framework Directive. WFD CIS Guidance Document No. 31

  • European Environmental Agency (EEA) (2012) Corine land cover 1990 (CLC1990) and Corine land cover changes 1975–1990 in a 10 km zone around the coast of Europe. http://www.eea.europa.eu

  • European Environmental Agency (EEA) (2014) Corine land cover 2000 seamless vector data. http://www.eea.europa.eu. Accessed 10 Apr 2015

  • Fausch KD, Torgersen CE, Baxter CV, Li HW (2002) Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience 52:483–498

    Article  Google Scholar 

  • Freeman MC, Bowen ZH, Crance JH (1997) Transferability of habitat suitability criteria for fishes in warmwater streams. N Am J Fish Manag 17:20–31. doi:10.1577/1548-8675(1997)017<0020:TOHSCF>2.3.CO;2

    Article  Google Scholar 

  • Global Environmental Flow Calculator (GEFC) (2016) A product of a collaborative project between International Water Management Institute (IWMI) and The Water Systems Analysis Group of the University of New Hampshire. http://www.iwmi.cgiar.org/resources/models-and-software/environmental-flow-calculators/

  • Greenberg L, Svendsen P, Harby A (1996) Availability of microhabitats and their use by brown trout (Salmo trutta) and grayling (Thymallus thymallus) in the River Vojman, Sweden. Regul Rivers Res Manag 12:287–303. doi:10.1002/(Sici)1099-1646(199603)12:2/3<287::Aid-Rrr396>3.3.Co;2-V

    Article  Google Scholar 

  • Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature, Appl Eng Agric 1(2): 96-99

  • Heggenes J (1990) Habitat utilization and preferences in juvenile Atlantic salmon (Salmo salar) in streams. Regul Rivers Res Manag 5:341–354. doi:10.1002/rrr.3450050406

    Article  Google Scholar 

  • Heggenes J, Brabrand Åg, Saltveit S (1990) Comparison of three methods for studies of stream habitat use by young brown trout and Atlantic salmon. Trans Am Fish Soc 119:416–430. doi:10.1577/1548-8659(1990)119

    Article  Google Scholar 

  • Heggenes J, Bagliniere JL, Cunjak RA (1999) Spatial niche variability for young Atlantic salmon (Salmo salar) and brown trout (S-trutta) in heterogeneous streams. Ecol Freshw Fish 8:1–21. doi:10.1111/j.1600-0633.1999.tb00048.x

    Article  Google Scholar 

  • Hydrologic Engineering Center (2010) HEC-RAS river analysis system, hydraulic reference manual. Hydraulic Engineering Center Report 69. US Army Corps of Engineers, Davis, CA

    Google Scholar 

  • IUCN Centre for Mediterranean Cooperation, IUCN Water and Nature Initiative (WANI) (2004) Assessment and provision of environmental flows in Mediterranean watercourse: concepts, methods and emerging practice, Mediterranean resource kit. https://portals.iucn.org/library/node/8781

  • Klossa-Kilia E, Ondrias IC (1994) Age, growth and length–weight relationship of brown trout Salmo trutta L. in the upper stream of Acheloos River, Greece. Aqua 1(3):29–36

    Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European Freshwater Fishes. Kottelat and Freyhof Publishing, Cornol and Berlin, p 646

    Google Scholar 

  • Krause P, Boyle DP (2005) Advances in geosciences comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. doi:10.5194/adgeo-5-89-2005

    Article  Google Scholar 

  • LeQuesne T, Kendy E, Weston D (2010) The implementation challenge. Taking stock of governmental policies to protect and restore environmental flows. The Nature Conservancy and WWF. http://awsassets.panda.org/downloads/the_implementation_challenge.pdf

  • Linnansaari T, Monk WA, Baird DJ, Curry RA (2013) Review of approaches and methods to Canada and internationally. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/039, vii + 75 p

  • Maddock I (1999) The importance of physical habitat assessment for evaluating river health. Freshw Biol 41:373–391. doi:10.1046/j.1365-2427.1999.00437.x

    Article  Google Scholar 

  • Mäki-Petäys A, Huusko A, Erkinaro J, Muotka T (2002) Transferability of habitat suitability criteria of juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 59:218–228. doi:10.1139/F01-209

    Article  Google Scholar 

  • Martínez-Capel F, García De Jalón D, Werenitzky D et al. (2009) Microhabitat use by three endemic Iberian cyprinids in Mediterranean rivers (Tagus River Basin, Spain). Fish Manag Ecol 16:52–60. doi:10.1111/j.1365-2400.2008.00645.x

    Article  Google Scholar 

  • Millidine KJ, Malcolm IA, Fryer RJ (2016) Assessing the transferability of hydraulic habitat models for juvenile Atlantic salmon. Ecol Indic 69:434–445. doi:10.1016/j.ecolind.2016.05.012

    Article  Google Scholar 

  • Moyle PB, Baltz DM (1985) Microhabitat use by an assemblage of California stream fishes: developing criteria for instream flow determinations. Trans Am Fish Soc 114:695–704. doi:10.1577/1548-8659(1985)114<695:MUBAAO>2.0.CO;2

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE 50(3):885–900. doi:10.13031/2013.23153

    Article  Google Scholar 

  • Muñoz-Mas R, Papadaki C, Martínez-Capel F et al. (2016) Generalized additive and fuzzy models in environmental flow assessment: a comparison employing the West Balkan trout (Salmo farioides Karaman, 1938). Ecol Eng 91:365–377. doi:10.1016/j.ecoleng.2016.03.009

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR et al. (2005) Soil and water assessment tool input/output file documentation, version 2005. Soil Water Res Lab. 65:139–158. doi:10.1016/0022-1694(83)90214-7. http//swatmodeltamuedu/documentation

  • Nikghalb S, Shokoohi A, Singh VP, Yu R (2016) Ecological regime versus minimum environmental flow: comparison of results for a river in a semi Mediterranean region. Water Resour Manag 30:4969–4984. doi:10.1007/s11269-016-1488-2

    Article  Google Scholar 

  • Nykanen M, Huusko A (2004) Transferability of habitat preference criteria for larval European grayling (Thymallus thymallus). Can J Fish Aquat Sci 61:185–192. doi:10.1139/F03-156

    Article  Google Scholar 

  • Panagos P, Liedekerke MVan, Jones A, Montanarella L (2012) European soil data centre: response to European policy support and public data requirements. Land Use Policy 29:329–338. doi:10.1016/j.landusepol.2011.07.003

    Article  Google Scholar 

  • Panagoulia D (1992) Hydrological modelling of a medium-size mountainous catchment from incomplete meteorological data. J Hydrol 137:279–310. doi:10.1016/0022-1694(92)90061-Y

    Article  Google Scholar 

  • Panagopoulos Y, Makropoulos C, Mimikou M (2011) Diffuse surface water pollution: driving factors for different geoclimatic regions. Water Resour Manag 25(14):3635–3660. doi:10.1007/s11269-011-9874-2

    Article  Google Scholar 

  • Papadaki C, Soulis K, Muñoz-Mas R et al. (2016) Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Sci Total Environ 540:418–428. doi:10.1016/j.scitotenv.2015.06.134

    Article  CAS  Google Scholar 

  • Paton RS, Matthiopoulos J (2016) Defining the scale of habitat availability for models of habitat selection. Ecology 97:1113–1122. doi:10.1890/14-2241.1/suppinfo

    Google Scholar 

  • Poff NL, Richter BD, Arthington AH et al. (2010) The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw Biol 55:147–170. doi:10.1111/j.1365-2427.2009.02204.x

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing.Version 3.2.1

  • Rahman K, Maringanti C, Beniston M et al. (2013) Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the upper rhone river watershed case in Switzerland. Water Resour Manag 27:323–339. doi:10.1007/s11269-012-0188-9

    Article  Google Scholar 

  • Raleigh RF, Zuckerman LD, Nelson PC (1986) Habitat suitability index models and instream flow suitability curves: brown trout, revised FWS/OBS—82/10.71, Washington DC

  • Shaeri Karimi S, Yasi M, Eslamian S (2012) Use of hydrological methods for assessment of environmental flow in a river reach. Int J Environ Sci Technol 9:549–558. doi:10.1007/s13762-012-0062-6

    Article  Google Scholar 

  • Skoulikidis Ν, Economou NA, Gritzalis CK, Zogaris S (2009) Rivers of the Balkans, In: Tockner K, Uehlinger U, Robinson CT (eds), Rivers of Europe. Elsevier Academic Press, Amsterdam, 421–466 ISBN:978-0-12-369449-2

  • Skoulikidis NT, Vardakas L, Karaouzas I et al. (2011) Assessing water stress in Mediterranean lotic systems: insights from an artificially intermittent river in Greece. Aquat Sci 73:581–597. doi:10.1007/s00027-011-0228-1

    Article  Google Scholar 

  • Soulis K, Dercas N (2007) Development of a GIS-based spatially distributed continuous hydrological model and its first application. Water Int 32:177–192. doi:10.1080/02508060708691974

    Article  Google Scholar 

  • Soulis KX, Valiantzas JD, Dercas N, Londra PA (2009) Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrol Earth Syst Sci 13:605–615. doi:10.5194/hess-13-605-2009

    Article  Google Scholar 

  • Soulis KX, Valiantzas JD (2012) Variation of runoff curve number with rainfall in heterogeneous watersheds. The Two-CN system approach. Hydrol Earth Syst Sci 16:1001–1015. doi:10.5194/hess-16-1001-2012

    Article  Google Scholar 

  • Soulis KX, Valiantzas JD (2013) Identification of the SCS-CN parameter spatial distribution using rainfall-runoff data in heterogeneous watersheds. Water ResourManag 27:1737–1749. doi:10.1007/s11269-012-0082-5

    Google Scholar 

  • Soulis KX (2015) Discussion of procedures to develop a standardized reference evapotranspiration zone map by Noemi Mancosu, Richard L. Snyder, and Donatella Spano. J Irrig Drain E 141:07014055. doi:10.1061/(ASCE)IR.1943-4774.0000831

    Article  Google Scholar 

  • Strakosh T, Neumann R, Jacobson R (2003) Development and assessment of habitat suitability criteria for adult brown trout in southern New England rivers. Ecol Freshw Fish 12:265–274

    Article  Google Scholar 

  • Smakhtin V, Anputhas M (2006) An assessment of environmental flow requirements of Indian river basins. International Water Management Institute, Colombo, IWMI Research Report 107

    Google Scholar 

  • Tharme RE (2003) A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res Appl 19:397–441. doi:10.1002/rra.736

    Article  Google Scholar 

  • Thomas JA, Bovee KD (1993) Application and testing of a procedure to evaluate transferabilty of habitat suitability criteria. Regul Rivers Res Manag 8:285–294. doi:10.1002/rrr.3450080307

    Article  CAS  Google Scholar 

  • Turnipseed DP, Sauer VB (2010) Discharge measurements at gaging stations: U.S. geological survey, techniques and methods book 3, chap. A8, p 87. http://pubs.usgs.gov/tm/tm3-a8/

  • Voos KA (1981) Simulated use of the exponential polynomial/maximum likelihood technique in developing suitability of use functions for fish habitat. 172 Utah State University. Department of Civil and Environmental Engineering, Logan, p 172

    Google Scholar 

  • Wang R, Kalin L (2011) Modelling effects of land use/cover changes under limited data. Ecohydrology 4:265–276. doi:10.1002/eco.174

    Article  Google Scholar 

  • Zika U, Peter A (2002) The introduction of woody debris into a channelized stream: effect on trout populations and habitat. River Res Appl 18:355–366. doi:10.1002/rra.677

    Article  Google Scholar 

  • Zion MS, Pradhanang SM, Pierson DC et al. (2011) Investigation and modeling of winter streamflow timing and magnitude under changing climate conditions for the Catskill Mountain region, New York, USA. Hydrol Process 25:3289–3301. doi:10.1002/hyp.8174

    Article  Google Scholar 

  • Zogaris S, Economou AN (2009) West Balkan Trout, Salmo fariodes. In: A. Legakis, P. Maragou (eds) Red data book of threatened animals of Greece Hellenic Zoological Society, pp.141–143. ISBN:978-960-85298-8-5

  • Zogaris S, Chatzinikolaou Y, Dimopoulos P (2009) Assessing environmental degradation of montane riparian zones in Greece. J Environ Biol 30:719–726

    Google Scholar 

  • Zorn TG, Seelbach PW, Rutherford ES (2012) A regional-scale habitat suitability model to assess the effects of flow reduction on fish assemblages in michigan streams1. J Am Water Resour Assoc 48:871–895. doi:10.1111/j.1752-1688.2012.00656.x

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of Francisco Martinez-Capel and Rafael Muñoz-Mas, in both field work and application of the habitat suitability models. This research was supported by funding from the Hellenic General Secretariat of Research and Technology in the framework of the NSRF 2007–2013, Project title “System for the Assessment of Acceptable Ecological Flows in Rivers and Streams of Greece, (ECOFLOW)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Dimitriou.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadaki, C., Soulis, K., Ntoanidis, L. et al. Comparative Assessment of Environmental Flow Estimation Methods in a Mediterranean Mountain River. Environmental Management 60, 280–292 (2017). https://doi.org/10.1007/s00267-017-0878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0878-4

Keywords

Navigation