Skip to main content

Advertisement

Log in

A Geostatistical Framework Predicting Zooplankton Abundance in a Large River: Management Implications towards Potamoplankton Sustainability

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The zooplankton community is a widely used bioindicator for the biological assessment of riverine aquatic ecosystems. Phyto-zooplankton interaction and spatially varying river environment parameters perceivably govern their spatial distribution in a large river. This invites the challenge of predicting zooplankton abundance along the river channel. The present article has proposed a geostatistical framework to predict zooplankton abundance along the river course while decoupling phyto-zooplankton relationship from spatial dependency. The strength of secondary data on the river Narmada—a large tropical river in India—has been utilised to accomplish the goal. The nonlinear logistic regression kriging has been found to be the most effective framework. The phyto-zooplankton relationship captured 66% of zooplankton variability, having moderate (37%) residual spatial dependence. The results have shown longitudinally fluctuating spatial variability, which supports the river serial discontinuity concept. The proposed framework has generated smooth zooplankton abundance and sustainability predictive maps that have allowed detection of the change point locations of zooplankton abundance. The map has precisely identified the most productive zone of zooplankton sustainability. The study also has appraised obtaining approximate data in the areas where sampling is infeasible, which will be helpful for location-specific management strategies on a lower spatial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah MA, Bahamid AAA, Alshajrawi OMS, Nazir MS, Tahir Z (2020) Integrated biomaterials engineering of oil palm fibres and microalgae for bioenergy, environmental remediation, and conversion into value-added-products. In IOP Conference Series: Earth and Environmental Science (Vol. 448, No. 1, p. 012091). IOP Publishing

  • Alhassan EH, Ofori-Danson PK, Samman J (2015) Ecological impact of river impoundment on zooplankton. Zool Ecol 25(2):136–142. https://doi.org/10.1080/21658005.2015.1012322

    Article  Google Scholar 

  • Allan JD, Castillo MM, Capps KA (2021) Stream ecology: structure and function of running waters. Springer Nature

  • Basu BK, Pick FR (1997) Phytoplankton and zooplankton development in a lowland, temperate river. J Plankton Res 19(2):237–253

    Article  Google Scholar 

  • Bennett L (2017) Algae, cyanobacteria blooms, and climate change. The Climate Institute

  • Bertani I, Del Longo M, Pecora S, Rossetti G (2016) longitudinal variability in hydrochemistry and zooplankton community of a large river: a Lagrangian‐based approach. River Res Appl. 32(8):1740–1754

    Article  Google Scholar 

  • Bhaumik U, Mukhopadhyay MK, Shrivastava NP, Sharma AP, Singh SN (2017) A case study of the Narmada River system in India with particular reference to the impact of dams on its ecology and fisheries. Aquat Ecosyst Health Manag. 20(1–2):151–159

    Article  Google Scholar 

  • Bhawsar A, Vyas V (2022) Correlation between Macroinvertebrates and Physicochemical Parameters in the Barna Basin of the Narmada River

  • Billen G, Garnier J, Hanset P (1994) Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. In Phytoplankton in turbid environments: rivers and shallow lakes (pp. 119–137). Springer, Dordrecht

  • Bowszys M, Tandyrak R, Gołaś I, Paturej E (2020) Zooplankton communities in a river downstream from a lake restored with hypolimnetic withdrawal. Knowl Manag Aquat Ecosyst 421:12

    Article  Google Scholar 

  • Casanova SMC, Panarelli EA, Henry R (2009) Rotifer abundance, biomass, and secondary production after the recovery of hydrologic connectivity between a river and two marginal lakes (São Paulo, Brazil). Limnologica 39(4):292–301

    Article  Google Scholar 

  • Chen CC, Gong GC, Chiang KP, Shiah FK, Chung CC, Hung CC (2021) Scaling effects of a eutrophic river plume on organic carbon consumption. Limnol Oceanogr 66(5):1867–1881

    Article  CAS  Google Scholar 

  • Chícharo A, Barbosa AB (2011) Hydrology and biota interactions as driving forces for ecosystem functioning. Treatise Estuar Coast Sci 10:7–47

    Google Scholar 

  • Connelly KA, Rollwagen-Bollens G, Bollens SM (2020) Seasonal and longitudinal variability of zooplankton assemblages along a river-dominated estuarine gradient. Estuar, Coast Shelf Sci 245:106980

    Article  Google Scholar 

  • Czerniawski R, Pilecka-Rapacz M (2011) Summer zooplankton in small rivers in relation to selected conditions. Open Life Sci 6(4):659–674

    Article  Google Scholar 

  • Czerniawski R, Pilecka-Rapacz M, Domagała J (2013) Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Open Life Sci 8(1):18–29

    Article  Google Scholar 

  • Czerniawski R, Domagała J (2014) Small dams profoundly alter the spatial and temporal composition of zooplankton communities in running waters. Int Rev Hydrobiol 99(4):300–311

    Article  Google Scholar 

  • Czerniawski R, Kowalska-Góralska M (2018) Spatial changes in zooplankton communities in a strong human-mediated river ecosystem PeerJ 6:e5087. https://doi.org/10.7717/peerj.5087

    Article  CAS  Google Scholar 

  • Drira Z, Kmiha-Megdiche S, Sahnoun H, Tedetti M, Pagano M, Ayadi H (2018) Copepod assemblages as a bioindicator of environmental quality in three coastal areas under contrasted anthropogenic inputs (Gulf of Gabes, Tunisia). J Mar Biol Assoc 98(8):1889–1905

    Article  Google Scholar 

  • Du P, Jiang ZB, Zhu YL, Tang YB, Liao YB, Chen QZ, Zeng JN, Shou L (2020) What factors control the variations in abundance, biomass, and size of mesozooplankton in a subtropical eutrophic bay? Estuar Coasts 43(8):2128–2140

    Article  CAS  Google Scholar 

  • Ejigu MT (2021) Overview of water quality modeling. Cogent Eng 8(1):1891711

    Article  Google Scholar 

  • Ekpo IE, Essien-Ibok MA, Effiong EE (2015) Biology of bigmouth sleeper, Eleotris vittata (Dumèril, 1861)(Pisces: Eleotridae) in the lower Cross River, Nigeria. Int J Fish Aquat Stud 3(2):346–352

    Google Scholar 

  • Esri R (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, CA

  • Filstrup CT, Heathcote AJ, Kendall DL, Downing JA (2016) Phytoplankton taxonomic compositional shifts across nutrient and light gradients in temperate lakes. Inland Waters 6(2):234–249

    Article  Google Scholar 

  • Frenette JJ, Massicotte P, Lapierre JF (2012) Colorful niches of phytoplankton shaped by the spatial connectivity in a large river ecosystem: a riverscape perspective. PLoS One 7(4):e35891

    Article  CAS  Google Scholar 

  • Gannon JE, Stemberger RS (1978) Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society, pp 16–35

  • Godfrey PC, Pearson RG, Pusey BJ, Arthington AH (2020) Drivers of zooplankton dynamics in a small tropical lowland river. Mar Freshw Res 72(2):173–185

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press on Demand

  • Goździejewska AM, Kruk M (2022) Zooplankton network conditioned by turbidity gradient in small anthropogenic reservoirs. Sci Rep 12(1):1–12

    Google Scholar 

  • Gupta D, Shukla R, Barya MP, Singh G, Mishra VK (2020) Water quality assessment of Narmada River along the different topographical regions of the central India. Water. Science 34(1):202–212

    Google Scholar 

  • Hanazato T (2001) Pesticide effects on freshwater zooplankton: an ecological perspective. Environ Pollut 112(1):1–10

    Article  CAS  Google Scholar 

  • Haining R (1993) Spatial data analysis in the social and environmental sciences. Cambridge University Press

  • Hao OJ (1996) Bioindicators for water quality evaluation– a review. J Chin Inst Environ Eng 6(1):1–19

    CAS  Google Scholar 

  • Hardenbicker P, Rolinski S, Weitere M, Fischer H (2014) Contrasting long‐term trends and shifts in phytoplankton dynamics in two large rivers. Int Rev Hydrobiol 99(4):287–299

    Article  Google Scholar 

  • Hardenbicker P, Weitere M, Ritz S, Schöll F, Fischer H (2016) Longitudinal plankton dynamics in the rivers Rhine and Elbe. River Res Appl 32(6):1264–1278

    Article  Google Scholar 

  • Hilborn R, Walters CJ (1992) Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. London: Chapman and Hall. 570 pp

  • Jafari N, Nabavi MS, Akhavan M (2011) Ecological investigation of zooplankton abundance in the river Haraz, Northeast Iran: impact of environmental variables. Arch Biol Sci 63(3):785–798

    Article  Google Scholar 

  • Jeppesen E, Noges P, Davidson TA, Haberman J, Noges T, Blank K, Lauridsen TL, Sondergaard M, Sayer C, Laugaste R, Johansson LS (2011) Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676(1):279–297

    Article  CAS  Google Scholar 

  • Jeschke JM, Kopp M, Tollrian R (2004) Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol Rev 79(2):337–349

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (2003) Mining Geostatistics, reprint ed

  • Kale VS (2002) Fluvial geomorphology of Indian rivers: an overview. Prog Phys Geogr 26(3):400–433. https://doi.org/10.1191/0309133302pp343ra

    Article  Google Scholar 

  • Kim HW, Joo GJ (2000) The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia 438(1):171–184

    Article  CAS  Google Scholar 

  • KOeHLER JAN (1995) Growth, production and losses of phytoplankton in the lowland River Spree: carbon balance Freshw Biol 34(3):501–512

    Article  Google Scholar 

  • Le Coz M, Chambord S, Souissi S, Meire P, Ovaert J, Buffan‐Dubau E, Prygiel J, Azemar F, Sossou AC, Lamothe S, Julien F (2018) Are zooplankton communities structured by taxa ecological niches or by hydrological features. Ecohydrology 11(5):e1956. https://doi.org/10.1002/eco.1956

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673

    Article  Google Scholar 

  • Lichstein JW, Simons TR, Franzreb KE (2002) Landscape effects on breeding songbird abundance in managed forests. Ecol Appl 12(3):836–857

    Article  Google Scholar 

  • Malviya P, Dwivedi AK (2015) Physico-chemical parameters of Narmada River Water: a review. Int J Chem Stud 3(2):01–04

    Google Scholar 

  • Massicotte P, Frenette JJ, Proulx R, Pinel-Alloul B, Bertolo A (2014) Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem. Landsc Ecol 29(1):67–79

    Article  Google Scholar 

  • McCauley E, Kalff J (1981) Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can J Fish Aquat Sci 38(4):458–463

    Article  Google Scholar 

  • Morgan SG (2020) Life and death in the plankton: larval mortality and adaptation. Ecology of Marine Invertebrate Larvae, pp 279–321

  • Muthulakshmi AL, Natesan U, Ferrer VA, Deepthi K, Venugopalan VP, Narasimhan SV (2019) Impact assessment of nuclear power plant discharge on zooplankton abundance and distribution in coastal waters of Kalpakkam, India. Ecol Process 8(1):1–10

    Article  Google Scholar 

  • Napiórkowski P, Napiórkowska T (2013) The diversity and longitudinal changes of zooplankton in the lower course of a large, regulated European river (the lower Vistula River, Poland). Biologia 68(6):1163–1171

    Article  Google Scholar 

  • Naskar M, Karthikeyan M, Sahu SK, Jha DN, Yadav AK, Jana C, Raman RK, Karunakaran D (2017) Plankton data for Narmada River. FS-CIFRI-Data Inventory. ICAR research data repository for knowledge management. http://krishi.icar.gov.in/jspui/handle/123456789/19273

  • Naskar M, Sarkar SD, Raman RK, Gogoi P, Sahu SK, Chandra G, Bhor M (2020) Quantifying plankto-environmental interactions in a tropical river Narmada, India: An alternative model-based approach. Ecohydrol Hydrobiol 20(2):265–275

    Article  Google Scholar 

  • Oke A, Sangodoyin A, Ogedengbe K, Omodele T (2013) Mapping of river water quality using inverse distance weighted interpolation in Ogun-Osun river basin. Niger Landsc Environ 7(2):48–62

    Google Scholar 

  • Okuku EO, Tole M, Kiteresi LI, Bouillon S (2016) The response of phytoplankton and zooplankton to river damming in three cascading reservoirs of the Tana River, Kenya. Lakes Reservoirs: Res Manag 21(2):114–132

    Article  Google Scholar 

  • Oparaku NF, Andong FA, Nnachi IA, Okwuonu ES, Ezeukwu JC, Ndefo JC (2022) The effect of physicochemical parameters on the abundance of zooplankton of River Adada, Enugu, Nigeria. J Freshw Ecol 37(1):33–56

    Article  CAS  Google Scholar 

  • Ovaskainen O, Weigel B, Potyutko O, Buyvolov Y (2019) Long-term shifts in water quality show scale-dependent bioindicator responses across Russia–Insights from 40 year-long bioindicator monitoring program. Ecol Indic 98:476–482. https://doi.org/10.1016/j.ecolind.2018.11.027

    Article  CAS  Google Scholar 

  • Pace ML, Findlay SE, Lints D (1992) Zooplankton in advective environments: the Hudson River community and a comparative analysis. Can J Fish Aquat Sci 49(5):1060–1069

    Article  Google Scholar 

  • Parmar TK, Rawtani D, Agrawal YK (2016) Bioindicators: the natural indicator of environmental pollution. Front life Sci 9(2):110–118. https://doi.org/10.1080/21553769.2016.1162753

    Article  CAS  Google Scholar 

  • Pasini MPB, Dal'Col Lúcio A, Cargnelutti Filho A (2014) Semivariogram models for estimating fig fly population density throughout the year. Pesqui Agropecuária Bras 49:493–505

    Article  Google Scholar 

  • Pawlowski J, Lejzerowicz F, Apotheloz-Perret-Gentil L, Visco J, Esling P (2016) Protist metabarcoding and environmental biomonitoring: time for change. Eur J Protistol 55:12–25

    Article  CAS  Google Scholar 

  • Roberto MC, Santana NF, Thomaz SM (2009) Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Braz J Biol 69:717–725

    Article  CAS  Google Scholar 

  • Rodrigues LC, Train S, Bovo-Scomparin VM, Jati S, Borsalli CCJ, Marengoni E (2009) Interannual variability of phytoplankton in the main rivers of the Upper Paraná River floodplain, Brazil: influence of upstream reservoirs. Braz J Biol 69:501–516

    Article  CAS  Google Scholar 

  • Scherwass A, Bergfeld T, Schoel A, Weitere M, Arndt H (2010) Changes in the plankton community along the length of the River Rhine: Lagrangian sampling during a spring situation. J plankton Res 32(4):491–502

    Article  Google Scholar 

  • Scherer C, Weber A, Lambert S, Wagner M (2018) Interactions of microplastics with freshwater biota. In Freshwater microplastics (pp. 153–180). Springer, Cham

  • Sládeček V (1983) Rotifers as indicators of water quality. Hydrobiologia 100(1):169–201

    Article  Google Scholar 

  • Singh SN (2009) River Narmada, its environment and fisheries. ICAR-CIFRI Bull 157:1–64

    Google Scholar 

  • Townsend SA, Douglas MM (2017) Discharge-driven flood and seasonal patterns of phytoplankton biomass and composition of an Australian tropical savannah river. Hydrobiologia 794(1):203–221

    Article  Google Scholar 

  • Uszko W, Diehl S, Pitsch N, Lengfellner K, Müller T (2015) When is a type III functional response stabilizing? Theory and practice of predicting plankton dynamics under enrichment. Ecology 96(12):3243–3256

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37(1):130–137

    Article  Google Scholar 

  • Ver Hoef JM, Peterson EE, Theobald D (2006) Spatial statistical models that use flow and stream distance. Environ Ecol Stat 13(4):449–464

    Article  Google Scholar 

  • Wang L, Chen Q, Han R, Wang B, Tang X (2016) Zooplankton community in Yangtze River Estuary and adjacent sea areas after the impoundment of the Three Gorges Reservoir. In Annales de Limnologie-International J Limnol 52, 273–284

  • Ward JW, Stanford JA (1983) Intermediate-disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems. Dyn Lotic Syst, Ann Arbor Sci 1983:347–356

    Google Scholar 

  • Wehr JD, Descy JP (1998) Use of phytoplankton in large river management. J Phycol 34(5):741–749

    Article  Google Scholar 

  • Xiong W, Li J, Chen Y, Shan B, Wang W, Zhan A (2016) Determinants of community structure of zooplankton in heavily polluted river ecosystems. Sci Rep. 6(1):1–11

    Article  CAS  Google Scholar 

  • Xiong W, Ni P, Chen Y, Gao Y, Li S, Zhan A (2019) Biological consequences of environmental pollution in running water ecosystems: a case study in zooplankton. Environ Pollut 252:1483–1490

    Article  CAS  Google Scholar 

  • Yang X, Jin W (2010) GIS-based spatial regression and prediction of water quality in river networks: a case study in Iowa. J Environ Manag 91(10):1943–1951

    Article  CAS  Google Scholar 

  • Yang Y, Shao C (2018) Spatial interpolation for periodic surfaces in manufacturing using a Bessel additive variogram model. J Manuf Sci Eng 140(6)

  • Yang J, Zhang X, Xie Y, Song C, Sun J, Zhang Y, Giesy JP, Yu H (2017) Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen. Environ Sci Technol 51(5):3057–3064

    Article  CAS  Google Scholar 

  • Yu Q, Chen Y, Liu Z, Zhu D, Wang H (2017) Longitudinal variations of phytoplankton compositions in lake-to-river systems. Limnologica 62:173–180

    Article  Google Scholar 

  • Zannatul F, Muktadir AKM (2009) A review: potentiality of zooplankton as bioindicator. Am J Appl Sci 6(10):1815–1819

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, Kolkata for providing computing facility. Authors also would like to acknowledge Md. Naim, Technical Assistant, ICAR-CIFRI, Barrackpore, Kolkata for data processing and cleaning.

Funding

The research is supported (included salary and facility only) by ICAR-Central Inland Fisheries Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

SKS: Geostatistical analysis, Creation of maps and initial draft manuscript; SDS: draft manuscript, review and editing; PG: Review and editing; MN: Conceptualisation and Methodology development.

Corresponding author

Correspondence to Malay Naskar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S.K., Das Sarkar, S., Gogoi, P. et al. A Geostatistical Framework Predicting Zooplankton Abundance in a Large River: Management Implications towards Potamoplankton Sustainability. Environmental Management 71, 1037–1051 (2023). https://doi.org/10.1007/s00267-023-01784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-023-01784-2

Keywords

Navigation