Contribution of Settlements to Deforestation and Carbon Stock Reduction in Legal Amazonia
Our finding that the settlements analyzed contributed 17 % of the total clear-cutting and 20 % of the total carbon lost in Legal Amazonia shows the importance of settlements. Despite only 8 % (397,254 km2) of Legal Amazonia being occupied by settlements and despite most of the cumulative deforestation (83 % or 806,593 km2) being outside of the settlements analyzed, the contribution of these settlements to deforestation rates and to carbon loss were both substantial and increased over time.
Most of the carbon stock loss (2.2 Pg C or 86 % of the total carbon loss in settlements) occurred in settlements situated in the arc of deforestation, where deforestation pressure is intense and the number of settlements is large (2190 settlements or 80 % of the total). In the arc of deforestation, the original carbon stock per hectare in vegetation is low in comparison with other areas, such as eastern Amazonas, northern Pará, and southern Amapá, where most of the PAE and PDS settlements are located (Fig. 1). In these areas, deforestation rates are still low but per hectare carbon stocks are greater in comparison with the arc of deforestation (Fearnside 1997; Fearnside 2010; Nogueira et al. 2015). Future deforestation in the PAE and PDS categories would therefore result in increasing carbon emission per unit area deforested. Despite these categories being “environmentally distinctive”, deforestation could progress in these areas in the future.
We observed that some settlements in areas of strong deforestation pressure (i.e., the arc of deforestation) are more vulnerable to deforestation than those situated far from these areas, regardless of whether these settlements are environmentally distinctive (PDSs, PAEs, and PAFs) or traditional (e.g., PAs, PICs, and PADs). Deforestation spreads faster in settlements in the “traditional” category as compared to “environmentally distinctive” settlements in areas of intense deforestation pressure. There is also pressure from loggers to extract timber in remaining forest areas inside settlements. Access to and transportation of timber is facilitated by the road network in the settlements (Arima et al. 2013). The result is that the landscape is more fragmented in comparison with settlements located in areas with low deforestation pressure. Deforestation rates in settlements depend on the decisions of settlers to clear-cut original forest or to reuse areas of secondary vegetation (Fearnside 1984). Furthermore, actor contributions to deforestation depend on who the dominant actors are in the area in question (Godar et al. 2012).
The annual rate of deforestation in both types of settlement (“traditional” and “environmentally distinctive”) followed the deforestation trend in Legal Amazonia as a whole indicated by PRODES. The rate had a peak in 2004 and decreased over the subsequent years, with slight increases in 2008 and 2013. Alencar et al. (2016) found the same tendency in the deforestation dynamics inside and outside of settlements in an analysis of settlements in the Amazonia biome. The “Amazonia biome”, defined by the Brazilian Institute of Geography and Statistics (IBGE) in 2004, is a 4.2 million-km2 area where the predominant original vegetation was Amazonian forest, although it also includes enclaves of non-forest vegetation (Brazil, IBGE 2004). The Amazonia biome is entirely contained within Legal Amazonia except for a very small area in the state of Maranhão.
Previous studies have been limited to analyzing deforestation in settlements using PRODES data (Brandão Jr. and Souza Jr. 2006; Brandão Jr. et al. 2012; Pacheco 2009). Schneider and Peres (2015) estimated deforestation in settlements using PRODES and PMDBBS data, as in our study, thereby including settlements in Mato Grosso, Maranhão, and Tocantins states located in savanna areas. These authors analyzed 1911 settlements with a total area of 267,092 km2 using data through 2011 from PRODES for the Amazonia biome and through 2009 from PMDBBS for the cerrado (16 %) and pantanal (Paraná River wetland) (1 %) biomes. They estimated that 55 % (146,937 km2) was cleared in the settlement areas they studied, representing a contribution of 13 % to the total clearing (1,092,211 km2) estimated in their study for Legal Amazonia.
Our study’s methodology was similar to that of Schneider and Peres (2015), although we did not use data for the Pantanal biome. However, due to the fact that we analyzed 829 settlements (130,162 km2) more than Schneider and Peres (2015) (Fig. 2; Table 1) and used PRODES data through 2013 we found different estimates for original vegetation lost (41 % or 160,410 km2) and for the contribution of settlements (17 %) to total deforestation in Legal Amazonia. This is because we considered the estimate of Nogueira et al. (2015) for vegetation loss (967,003 km2). If all settlements were included in the analysis, the impact of settlements on deforestation in Legal Amazonia would be somewhat higher. Carbon lost in settlements is also higher than estimated because our study does not consider the carbon lost by degradation in remaining forest, such as the carbon stock reduction by legal logging in areas of community forest management or by illegal logging of “legal reserve” areas inside the settlements. “Legal reserves” refer to a percentage of each property that must be maintained as forest under Brazil’s Forest Code (both Law 4.771/1965 and the current Code under Law 12.651/2012).
Deforestation in settlements is driven by settlement history, size, location, number of settlers, and the agricultural system they use (Ezzine-de-Blas et al. 2011; Pacheco 2009). Moreover, not all of the deforestation estimated in settlements can be attributed to the settlers’ activities. This is because, depending on how the settlement was obtained by INCRA, cleared areas could have already been present before the settlements were created (Pacheco 2009). Settlers often spontaneously arrive and begin clearing at a site that will only be officially established as a settlement area several years later. Schneider and Peres (2015) found that forest loss begins ~4 years before the official document (portaria) is issued creating a settlement. Our study analyzed 950 settlements created in the period from 2000 to 2008 and estimated that 42 % of the forest cover had been lost through the year of official creation of settlements in the PA category. In the “environmentally distinctive” settlements the percentages were 5 % for PAE and 7 % for PDS. Alencar et al. (2013) found that, in settlements created since 1997, an average of 38 % of the forest was lost before settlement creation.
Governance policies for land tenure in the states in Legal Amazonia are among the least effective in Brazil (Peres and Schneider 2012). To reduce and control deforestation in settlements, INCRA must make efforts to take effective control of agrarian reform lands, to ensure land access to landless families, recuperate degraded areas, and counter illegal deforestation in settlements. Governance policies that control illegal logging inside of settlements and support only activities with low impact must be strengthened in the settlements that have already been implemented. Furthermore, INCRA should intervene by changing its policy of considering clearing as a form of land “improvement” (benfeitoria) for purposes of granting land tenure rights (Fearnside 1979; Mahar 1989). Cattle ranching is the main activity when settlements are created in areas with poor soil, resulting in increasing deforestation (Fearnside 1986a, 2001; Le Tourneau and Bursztyn 2010). In the initial stage of colonization, INCRA should limit concessions to one 100-ha lote, not authorizing larger holdings, since cattle ranching tends to predominate in larger properties (Godar et al. 2012). Reydon et al. (2015) propose developing a land-governance system where the property can be registered, identified, and updated based on satellite images and information provided by landowners. The ideal territorial management system should be integrated at all institutional scales (federal, state, and municipal). Currently, the Rural Environmental Registry (CAR = Cadastro Ambiental Rural) exists to promote the identification and integration of environmental information on rural properties, including those in settlements. This information can contribute to an environmental regularization of rural properties and assist activities such as deforestation monitoring, especially in legal reserves (RLs) and permanent preservation areas (APPs) (Brazil, MMA 2016). Fearnside (2001) suggested applying high taxes to land sales and increasing the difficulty of transferring land titles in order to deal with the “industry of invasion” (i.e., settlers receiving land from INCRA and selling, only to seek a new property in another settlement). Despite the above suggestions for governance policies being “more easily said than done”, INCRA has to start to take adequate control of existing settlements before creating new settlements in intact forest.
Private Colonization Projects (PCPs = Projetos de Colonização Particular) were an important form of settlement in the 1970s and early 1980s. These areas are not officially classified as “settlements” and are not included in INCRA databases. Private settlements gave rise to many new municipalities; they were major sites of deforestation in the past and continue contributing to Amazonian clearing today. Most PCPs were in Mato Grosso, such as Sinop, Vera, Nova Bandeirantes, Apiacás, Alta Floresta, Paranaíta, Juruena, Colíder, Terra Nova, and Porto dos Gaúchos (Galvão 2013). In Pará, the Tucumã private colonization project initiated a major deforestation hotspot.
Environmentally Distinctive Settlements (PAE, PDS, and PAF)
Environmentally distinctive settlements are established by both federal and state governments. We focus our discussion on federal environmentally distinctive settlements (PAE, PDS, and PAF), for which INCRA is responsible, rather than “State Agro-Extractivist Settlement Projects (PEAEX = Projetos de Assentamento Estadual Agroextrativista) and “State Sustainable Settlement Projects” (PEAS = Projetos Estaduais de Assentamento Sustentável) (Brazil, INCRA 2015b).
The carbon stock remaining in PAE, PDS, and PAF settlements (57 % of the total, or 2.2 Pg C) is relevant. This shows the importance of these three categories in terms of future carbon emissions if deforestation were to advance in these areas. This is a consequence of the large area comprised by these categories (54 % of the total = 124,853 km2, see Table 3) that still is covered by vegetation (forest and non-forest) and the greater per hectare carbon stock in this vegetation.
We observed that in 180 settlements (7 % of the total) no clear-cut polygons were mapped by the monitoring systems (PRODES and PMDBBS). Most of these settlements (118 settlements, or 66 % of those with no clearing) are in the PAE category, and they are identified as islands in the northern part of Pará state (e.g., PAE Ilha do Pará, PAE Ilha Maracujá I, and PAE Ilha Ituquara). In contrast, we found that in consolidated frontier areas (e.g., Maranhão) or in areas where deforestation rates are high (e.g., Pará and Mato Grosso) clear-cutting had exceeded 50 % of the settlement project area in some environmentally distinctive settlements, and some settlements had even lost all of their original vegetation.
We found that families settled in environmentally distinctive and traditional settlements cleared similar average areas per year (1.7 and 1.6 ha per family, respectively) if the settlement is located in arc of deforestation. This demonstrates the vulnerability of these settlements in areas with high deforestation pressure. The environmentally distinctive settlements are therefore not so different as compared to the traditional settlements if both are inside the arc of deforestation, indicating that both categories of settlement can have similar projected deforestation in the continued absence of mechanisms to prevent clear-cutting.
INCRA has reportedly been allowing families without an extractivist profile to be settled in PAE and PDS settlements (Guerra 2002; Silveira and Wiggers 2013). This will inevitably lead to the settlers deforesting rather than extracting non-timber forest products such as rubber (Hevea brasiliensis) and Brazil nuts (Bertholetia exelsa). Even in settlements where the families have the forest extractivist profile (e.g., rubber tappers), there is a tendency to abandon extractivist activities and shift to cattle ranching due low prices of non-timber forest products (Gomes et al. 2012). For example, in PDS São Salvador in Acre the decline in rubber price and factors such as difficulty in selling rubber and the distance from rubber-tapper houses to the areas where rubber extraction is done led the settlers (former rubber tappers) to invest in agriculture and cattle ranching. Cattle are easy to sell and access to rural credit for cattle made the settlers invest in expansion of pasture. Cattle therefore became important as a strategy for savings and as a source of income for settlers (Salisbury and Schmink 2007). The major concern regarding the PAE, PDS, and PAF categories is that, when areas of forest are transformed into settlements, the expectation will be for settlers to receive financial credit for cattle ranching, thereby threatening the forest resources (Guerra 2002). Thus, pre-existing socioeconomic factors and the geographical configuration of the frontier in which the settlements are located influence the deforestation process (Pacheco 2009).
Furthermore, there have been cases where protected areas had part of their boundaries degazetted in order to allocate the areas to “environmentally distinctive” settlements. For example, in Amazônia National Park in Pará (Law n° 12,678 of 25 July 2012: Article 3) 18,699 ha (2.5 % of the park) was transferred to INCRA for creation of “sustainable” settlements. This precedent could represent a threat to protected areas in Legal Amazonia.
Vulnerability of Settlements to Deforestation and Carbon Loss
Settlements become vulnerable to deforestation when activities such as illegal logging take place inside their boundaries (Fearnside 2001). In Pará state there are reports of logging companies encouraging creation of settlements in forest areas just for timber extraction. In these cases, locations are chosen for the new settlements based on timber resources rather than on whether or not there is population in these areas (Greenpeace 2007). Settlements also become vulnerable when smallholders sell their properties and move to new settlements or to other locations outside of settlement areas. Thus, the area available for deforestation increases when settlers sell their lots to newcomers, who purchase multiple lots and consolidate them into a single ranch (Carrero and Fearnside 2011; Fearnside 2001, 2008).
In addition, deforestation dynamics in Amazonian settlements have been impacted by the new Brazilian Forest Code (Law no 12.651/2012), especially due to modification of the forest reforestation rule for illegally cleared portions of the Legal Reserve and the Permanent Preservation Areas (APPs = Áreas de Preservação Permanente) (Alencar et al. 2013). We observed that the percentage contribution of settlements to total deforestation increased from 27 % in 2011 to 30 % in 2012 (Fig. 3). Part of this increase could be a reflection of the new law. In the new Forest Code there is no obligation to reforest areas that were cleared through July of 2008 in the “legal reserve” of each property because this cleared area is recognized as “consolidated”. The requirement for recovering lost riparian vegetation in “permanent preservation areas” (APPs) depends on the property size and, in some cases, on river width; the areas required became smaller in comparison to the previous Forest Code. Thus, one could have cases in settlement areas where there are two properties of the same size (e.g.,100 ha) with different areas of forest in each property (e.g., one with 20 ha of forest and the other with 80 ha), but both are considered to be “regular”. This can occur because, if the clearing in the property with only 20 ha of remaining forest occurred prior to 2008, the clearing is considered to be legal (Alencar et al. 2013).
In Apuí municipality in southern Amazonas, for example, 109.1 km2 (9.6 %) of the area of APP on the edges of watercourses (30–500 m on each side) were cleared through 2012. Out of this total, 75 % (81.4 km2) were in settlement areas: the Juma Federal Settlement Project (PA Juma), PAE Aripuanã Guariba, and PAE São Benedito. Most of the illegal clearing occurred in PA Juma, with 74.4 km2 or 68 % of the total APP area having been cleared in the settlement. PAE Aripuanã Guariba was second with 6.7 km2 or 6 %, followed by PAE São Benedito with 0.3 km2 or 0.3 % (Fonseca et al. 2014). These results indicate the impact of the new rules of the Forest Code in settlement areas and the risks of expanding deforested areas in properties inside of settlements due to the new rules.
We did not differentiate deforestation resulting from settlers’ activities from that done by external actors. Future studies are needed to distinguish deforestation activities by settlers from those by external actors such as ranchers and loggers (Fearnside 2008). This is because, depending on the actor profile, the dynamics of deforestation spread in settlements can be either more intense or more moderate (Fearnside 2008; Godar et al. 2014).
The role of settlements in deforestation dynamics is significant in comparison with other land-title categories (categorias fundiárias) in Legal Amazonia. In 2013, settlement projects contributed 29 % (1399.9 km2) of the total deforestation in Legal Amazonia. The second greatest contribution to deforestation was in areas of “land lacking title information”, which contributed 23 % (1121.4 km2) of deforestation in 2013, followed by “private property” with 20 % (994.0 km2) and “non-designated public lands” with 14 % (665.2 km2) (IPAM et al. 2014). Thus, one of biggest challenges for agrarian reform policies in Brazil is to provide land access to settlers and, at the same time, to protect the remaining forest in settlements in Legal Amazonia (Brandão Jr. and Souza Jr. 2006; Brandão Jr. et al. 2013).