Skip to main content
Log in

Evaluation of Optically Acquired Zooplankton Size-Spectrum Data as a Potential Tool for Assessment of Condition in the Great Lakes

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

An optical plankton counter (OPC) potentially provides an assessment tool for zooplankton condition in ecosystems that is rapid, economical, and spatially extensive. We collected zooplankton data with an OPC in 20 near-shore regions of 4 of the Laurentian Great Lakes. The zooplankton size information was used to compute mean size, biomass density, and size-spectra parameters for each location. The resulting metrics were analyzed for their ability to discriminate among the Great Lakes. Biomass density provided discrimination among lakes, as did several parameters describing spectra shape and distribution. A proposed zooplankton indicator, mean size (determined with OPC measurements in this study), was found to provide discrimination among lakes. Size-spectra-related parameters added increased ability to discriminate in conjunction with the biomass density (or mean size) metric. A discriminant function analysis of the multiple metrics (mean size, biomass density, and distribution parameters) suggests that a multi metric size-based approach might be used to classify communities among lakes improving a mean-size metric. The feasibility OPCs and size-based metrics for zooplankton assessment was found to have potential for further development as assessment tools for the biological condition of zooplankton communities in the Great Lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Literature cited

  • J. A. Arruda G. R. Marzolf R. T. Faulk (1983) ArticleTitleThe role of suspended sediments in the nutrition of zooplankton in turbid reservoirs Ecology 64 1225–1235

    Google Scholar 

  • R. P. Barbiero R. E. Little M. L. Tuchman (2001) ArticleTitleResults from the U. S. EPA’s biological open water surveillance program of the Laurentian Great Lakes: III. Crustacean zooplankton Journal of Great Lakes Research 27 167–184

    Google Scholar 

  • U. Borgmann (1982) ArticleTitleParticle-size-conversion efficiency and total animal production in pelagic ecosystems Canadian Journal of Fisheries and Aquatic Sciences 39 668–674

    Google Scholar 

  • U. Borgmann H. Shear J. Moore (1984) ArticleTitleZooplankton and potential fish production in Lake Ontario Canadian Journal of Fisheries and Aquatic Sciences 41 1303–1309

    Google Scholar 

  • L. Brooks S. Dodson (1965) ArticleTitlePredation, body size, and composition of plankton Science 150 28–35

    Google Scholar 

  • R. E. Carlson (1977) ArticleTitleA trophic state index for lakes Limnology and Oceanography 22 361–369

    Google Scholar 

  • J. L. Confer T. Kaaret G. E. Likens (1983) ArticleTitleZooplankton diversity and biomass in recently acidified lakes Canadian Journal of Fisheries and Aquatic Sciences 40 36–42

    Google Scholar 

  • Danz, N. P., R. R. Regal, G. J. Niemi, V. Brady, T. Hollenhorst, L. B. Johnson, G. E. Host, J. M. Hanowski, C. A. Johnston, T. Brown, J. Kingston, and J. R. Kelly. In press Environmentally stratified sampling design for the development of Great Lakes environmental indicators. Environmental Monitoring and Assessment

  • EPA. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/440/4-89-001.EPA, Washington, DC

  • EPA. 1994. Indicator development strategy. EPN/620/R-94/022. EPA, Washington, DC

  • EPA. 1998. Lake and reservoir bioassessment and biocriteria. EPA/841/B-98/007. EPA, Washington, DC

  • EPA. 1999. Rapid bioassessment protocols for use in wadeable streams and rivers: Periphyton, benthic macroinvertebrates, and fish. EPA/841/B-99/002. EPA, Washington, DC

  • EPA. 2000. Results from the Great Lakes national program Office’s biological open water surveillance program of the Laurentian Great Lakes for 1998. EPA 905/R-00/006. EPA, Washington, DC

  • Focal Technologies. 1999. Optical plankton counter: user guide P/N: 216-060 1-00D. Food Technologies. Inc., Dartmouth, Nova Scotia., Canada

  • A. W. Herman (1992) ArticleTitleDesign and calibration of a new optical plankton counter capable of sizing small zooplankton Deep Sea Research 39 395–415 Occurrence Handle10.1016/0198-0149(92)90080-D

    Article  Google Scholar 

  • A. W. Herman N. A. Cochrane D. D. Sameoto (1993) ArticleTitleDetection and abundance estimation of euphausiids using an optical plankton counter Marine Ecological Progress Series 94 165–173

    Google Scholar 

  • Jackson, L. E., J. C. Kurtz, and W. S. Fisher. 2000. Evaluation guidelines for ecological indicators. EPA/620/R-99/005. EPA, Washington, DC

  • O. E. Johannsson C. Dumitru D. M. Graham (1999) ArticleTitleEstimation of zooplankton mean length for use in an index of fish community structure and its application to Lake Erie Journal of Great Lakes Research 25 179–186

    Google Scholar 

  • Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I. J. Schlosser. 1986. Assessing biological integrity in running waters: A method and its rationale. Special Publication 5. Illinois Natural History Survey, Champaign, Illinois

  • W. Keller N. D. Yan K. E. Holtz J. R. Pitblado (1990) ArticleTitleInferred effects of lake acidification on Daphnia galeata mendotae Environmental Science and Technology 24 1259–1261 Occurrence Handle10.1021/es00078a015

    Article  Google Scholar 

  • S. R. Kerr L. M. Dickie (2001) The biomass spectrum: a predator-prey theory of aquatic production Columbia University Press New York

    Google Scholar 

  • K. L. Kirk (1992) ArticleTitleEffects of suspended clay on Daphnia body growth and fitness Freshwater Biology 28 103–110

    Google Scholar 

  • S. J. Lozano J. V. Scharold T. F. Nalepa (2001) ArticleTitleRecent declines in benthic macroinvertebrate densities in Lake Ontario Canadian Journal of Fisheries and Aquatic Sciences 58 518–529 Occurrence Handle10.1139/cjfas-58-3-518

    Article  Google Scholar 

  • MacKay, I., K. Bowers, and J. Snow. 1997. System integration with an optical plankton counter. Focal Technolgies Inc., Dartmouth, Nova Scotia, B3B 1S1, Canada

  • G.D. McCabe W. J. O’Brien (1983) ArticleTitleThe effects of suspended silt on feeding and reproduction of Daphnia pulex American Midland Naturalist 110 324–332

    Google Scholar 

  • E. L. Mills D. M. Green A. Schiavone SuffixJr (1987) ArticleTitleUse of zooplankton size to assess the community structure of fish populations in freshwater lakes North American Journal of Fisheries Management 7 369–378 Occurrence Handle10.1577/1548-8659(1987)7<369:UOZSTA>2.0.CO;2

    Article  Google Scholar 

  • T. F. Nalepa D. J. Hartson D. L. Fanslow G. A. Lang S. J. Lozano (1998) ArticleTitleDeclines in benthic macroinvertebrate populations in southern Lake Michigan, 1980–1993 Canadian Journal of Fisheries and Aquatic Sciences 55 2402–2413 Occurrence Handle10.1139/cjfas-55-11-2402

    Article  Google Scholar 

  • T. F. Nalepa D. J. Hartson J. Buchanan J. F. Cavaletto G. A. Lang S. J. Lozano (2000) ArticleTitleSpatial variation in density, mean size and physiological condition of the holarctic arnphipod Diporeia spp. in Lake Michigan Freshwater Biology 43 107–119 Occurrence Handle10.1046/j.1365-2427.2000.00530.x

    Article  Google Scholar 

  • Niemi, G., and others. 2001. Development of environmental indicators of condition, integrity, and sustainability in the Great Lakes basin. US EPA STAR Grant. Avialable at http://glei.nrri.umn.edu/default/Design.htm

  • V. E. Panov D. J. McQueen (1998) ArticleTitleEffects of temperature on individual growth rate and body size of a freshwater amphipod Canadian Journal of Zoology 76 1107–1116 Occurrence Handle10.1139/cjz-76-6-1107

    Article  Google Scholar 

  • R. Peters (1983) Ecological implications of body size Cambridge University Press Cambridge

    Google Scholar 

  • T. Platt K. Denman (1978) ArticleTitleThe structure of pelagic marine ecosystems Rapports et Procés-Verbaux des Réunion. Conseid International pour ‘Exploration de la Mer 173 60–65

    Google Scholar 

  • SOLEC 2000. Selection of indicators for Great Lakes basin ecosystem health. Version 4. P. Bertram and N. Stadler-salt (eds.). Available at www.on.ec.gc.ca/solec/indicators2000-e.html

  • W. G. Sprules (2001) ArticleTitleSpatial estimates of prey consumption by Mysis relicta Loven using an optical plankton counter Verhandlungen lnternationale Vereinigung Limnologie 27 3275–3278

    Google Scholar 

  • W. G. Sprules A. P. Goyke (1994) ArticleTitleSize-based structure and production in the pelagia of Lakes Ontario and Michigan Canadian Journal of Fisheries and Aquatic Sciences 51 2603–2611

    Google Scholar 

  • W. G. Sprules E. H. Jin A. W. Herman J. D. Stockwell (1998) ArticleTitleCalibration of an optical plankton counter for use in fresh water Limnology and Oceanography 43 726–733

    Google Scholar 

  • R. S. Sternberger D. P. Larsen T. M. Kincaid (2001) ArticleTitleSensitivity of zooplankton for regional lake monitoring Canadian Journal of Fisheries and Aquatic Sciences 58 2222–2232 Occurrence Handle10.1139/cjfas-58-11-2222

    Article  Google Scholar 

  • R. W. Sterner J. J. Elser (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere Princeton University Press Princeton, New Jersey

    Google Scholar 

  • InstitutionalAuthorNameSYSTAT (1998) The system for statistics Systat Software Inc Richmond, CA

    Google Scholar 

  • A. J. Tessier R. J. Horwitz (1990) ArticleTitleInfluence of water chemistry on size structure of zooplankton assemblages Canadian Journal of Fisheries and Aquatic Sciences 47 1973–1943

    Google Scholar 

  • M. L. Thiebaux L. M. Dickie (1992) ArticleTitleModels of aquatic biomass size spectra and the common structure of their solutions Journal of Theoretical Biology 159 147–161

    Google Scholar 

  • M. L. Thiebaux L. M. Dickie (1993) ArticleTitleStructure of the body-size spectrum of the biomass in aquatic ecosystems: a consequence of allometry in predator-prey interactions Canadian Journal of Fisheries and Aquatic Sciences 50 1308–1317

    Google Scholar 

  • B. Vidondo Y. T. Prairie J. M. Blanco C. M. Duarte (1997) ArticleTitleSome aspects of the analysis of size spectra in aquatic ecology Limnology and Oceanography 42 184–192

    Google Scholar 

  • M. Zhou Y. Zhu S. Putnam J. Peterson (2001) ArticleTitleMesoscale variability of physical and biological fields in southeastern Lake Superior Limnology and Oceanography 46 679–688

    Google Scholar 

Download references

Acknowledgments

The information in this document has been funded wholly by the US Environmental Protection Agency. It has been subjected to review by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. We would like to thank NHEERL staff S. G. Paulsen, M. E. Sierszen, and M. A. Starus for comments on the manuscript. We would also like to thank M. Zhou and three anonymous reviewers, who greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peder Yurista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurista, P., Kelly, J.R. & Miller, S. Evaluation of Optically Acquired Zooplankton Size-Spectrum Data as a Potential Tool for Assessment of Condition in the Great Lakes. Environmental Management 35, 34–44 (2005). https://doi.org/10.1007/s00267-003-0298-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-003-0298-5

Keywords

Navigation