Skip to main content

Advertisement

Log in

Profile of Adipose-Derived Stem Cells in Obese and Lean Environments

  • Original Article
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

With the demand for stem cells in regenerative medicine, new methods of isolating stem cells are highly sought. Adipose tissue is a readily available and non-controversial source of multipotent stem cells that carries a low risk for potential donors. However, elevated donor body mass index has been associated with an altered cellular microenvironment and thus has implications for stem cell efficacy in recipients. This review explored the literature on adipose-derived stem cells (ASCs) and the effect of donor obesity on cellular function.

Methods

A review of published articles on obesity and ASCs was conducted with the PubMed database and the following search terms: obesity, overweight, adipose-derived stem cells and ASCs. Two investigators screened and reviewed the relevant abstracts.

Results

There is agreement on reduced ASC function in response to obesity in terms of angiogenic differentiation, proliferation, migration, viability, and an altered and inflammatory transcriptome. Osteogenic differentiation and cell yield do not show reasonable agreement. Weight loss partially rescues some of the aforementioned features.

Conclusions

Generally, obesity reduces ASC qualities and may have an effect on the therapeutic value of ASCs. Because weight loss and some biomolecules have been shown to rescue these qualities, further research should be conducted on methods to return obese-derived ASCs to baseline.

Level V

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors- www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mojallal A, Lequeux C, Shipkov C et al (2011) Influence of age and body mass index on the yield and proliferation capacity of adipose-derived stem cells. Aesthetic Plast Surg 35(6):1097–1105

    Article  PubMed  Google Scholar 

  3. Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu W, Niklason L, Steinbacher DM (2013) The effect of age on human adipose-derived stem cells. Plast Reconstr Surg 131(1):27–37

    Article  CAS  PubMed  Google Scholar 

  5. Kornicka K, Marycz K, Tomaszewski KA, Maredziak M, Smieszek A (2015) The effect of age on osteogenic and adipogenic differentiation potential of human adipose derived stromal stem cells (hASCs) and the impact of stress factors in the course of the differentiation process. Oxid Med Cell Longev 2015:309169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60(5):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Harmelen V, Rohrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53(5):632–637

    Article  CAS  PubMed  Google Scholar 

  8. Aksu AE, Rubin JP, Dudas JR, Marra KG (2008) Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann Plast Surg 60(3):306–322

    Article  CAS  PubMed  Google Scholar 

  9. Geissler PJ, Davis K, Roostaeian J, Unger J, Huang J, Rohrich RJ (2014) Improving fat transfer viability: the role of aging, body mass index, and harvest site. Plast Reconstr Surg 134(2):227–232

    Article  CAS  PubMed  Google Scholar 

  10. Cleveland-Donovan K, Maile LA, Tsiaras WG, Tchkonia T, Kirkland JL, Boney CM (2010) IGF-I activation of the AKT pathway is impaired in visceral but not subcutaneous preadipocytes from obese subjects. Endocrinology 151(8):3752–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Faustini M, Bucco M, Chlapanidas T et al (2010) Nonexpanded mesenchymal stem cells for regenerative medicine: yield in stromal vascular fraction from adipose tissues. Tissue Eng Part C Methods 16(6):1515–1521

    Article  PubMed  Google Scholar 

  12. Yang HJ, Kim KJ, Kim MK et al (2014) The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells. Cells Tissues Organs 199(5–6):373–383

    PubMed  Google Scholar 

  13. Yu G, Wu X, Dietrich MA et al (2010) Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy 12(4):538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Harmelen V, Skurk T, Rohrig K et al (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27(8):889–895

    Article  PubMed  Google Scholar 

  15. Aust L, Devlin B, Foster SJ et al (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6(1):7–14

    Article  CAS  PubMed  Google Scholar 

  16. Bakker AH, Van Dielen FM, Greve JW, Adam JA, Buurman WA (2004) Preadipocyte number in omental and subcutaneous adipose tissue of obese individuals. Obes Res 12(3):488–498

    Article  PubMed  Google Scholar 

  17. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83(2):461S–465S

    Article  CAS  PubMed  Google Scholar 

  18. Hosogai N, Fukuhara A, Oshima K et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56(4):901–911

    Article  CAS  PubMed  Google Scholar 

  19. WHO (2018) Obesity and overweight. Geneva: World Health Organization. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed Nov 2018

  20. Baptista LS, da Silva KR, da Pedrosa CS et al (2009) Adipose tissue of control and ex-obese patients exhibit differences in blood vessel content and resident mesenchymal stem cell population. Obes Surg 19(9):1304–1312

    Article  PubMed  Google Scholar 

  21. Saillan-Barreau C, Cousin B, Andre M, Villena P, Casteilla L, Penicaud L (2003) Human adipose cells as candidates in defense and tissue remodeling phenomena. Biochem Biophys Res Commun 309(3):502–505

    Article  CAS  PubMed  Google Scholar 

  22. Cousin B, Andre M, Casteilla L, Penicaud L (2001) Altered macrophage-like functions of preadipocytes in inflammation and genetic obesity. J Cell Physiol 186(3):380–386

    Article  CAS  PubMed  Google Scholar 

  23. Perez LM, Bernal A, San Martin N, Lorenzo M, Fernandez-Veledo S, Galvez BG (2013) Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7 pathway. Diabetes 62(7):2368–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lasselin J, Magne E, Beau C et al (2014) Adipose inflammation in obesity: relationship with circulating levels of inflammatory markers and association with surgery-induced weight loss. J Clin Endocrinol Metab 99(1):E53–E61

    Article  PubMed  Google Scholar 

  25. Nomiyama T, Perez-Tilve D, Ogawa D et al (2007) Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest 117(10):2877–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petrangeli E, Coroniti G, Brini AT et al (2016) Hypoxia promotes the inflammatory response and stemness features in visceral fat stem cells from obese subjects. J Cell Physiol 231(3):668–679

    Article  CAS  PubMed  Google Scholar 

  27. Perez LM, Bernal A, de Lucas B et al (2015) Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human. PLoS ONE 10(4):e0123397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Onate B, Vilahur G, Camino-Lopez S et al (2013) Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genom 14:625

    Article  CAS  Google Scholar 

  29. Strong AL, Bowles AC, Wise RM et al (2016) Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells 34(3):614–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu XY, Ma S, Eirin A et al (2016) Functional plasticity of adipose-derived stromal cells during development of obesity. Stem Cells Transl Med 5(7):893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee YH, Nair S, Rousseau E et al (2005) Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia 48(9):1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nair S, Lee YH, Rousseau E et al (2005) Increased expression of inflammation-related genes in cultured preadipocytes/stromal vascular cells from obese compared with non-obese Pima Indians. Diabetologia 48(9):1784–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roldan M, Macias-Gonzalez M, Garcia R, Tinahones FJ, Martin M (2011) Obesity short-circuits stemness gene network in human adipose multipotent stem cells. FASEB J 25(12):4111–4126

    Article  CAS  PubMed  Google Scholar 

  34. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J (2009) Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA 106(40):17031–17036

    Article  PubMed  PubMed Central  Google Scholar 

  35. Strong AL, Hunter RS, Jones RB et al (2016) Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells. J Transl Med 14:27

    Article  PubMed  PubMed Central  Google Scholar 

  36. Onate B, Vilahur G, Ferrer-Lorente R et al (2012) The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J 26(10):4327–4336

    Article  CAS  PubMed  Google Scholar 

  37. Perez LM, Bernal A, San Martin N, Galvez BG (2013) Obese-derived ASCs show impaired migration and angiogenesis properties. Arch Physiol Biochem 119(5):195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Isakson P, Hammarstedt A, Gustafson B, Smith U (2009) Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 58(7):1550–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu Q, Ji FK, Wang JH, Nan H, Liu DL (2015) Stromal cell-derived factor 1 promoted migration of adipose-derived stem cells to the wounded area in traumatic rats. Biochem Biophys Res Commun 467(1):140–145

    Article  CAS  PubMed  Google Scholar 

  40. Baek SJ, Kang SK, Ra JC (2011) In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med 43(10):596–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frazier TP, Gimble JM, Devay JW, Tucker HA, Chiu ES, Rowan BG (2013) Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol 14:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moschen AR, Molnar C, Geiger S et al (2010) Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut 59(9):1259–1264

    Article  CAS  PubMed  Google Scholar 

  43. Viardot A, Lord RV, Samaras K (2010) The effects of weight loss and gastric banding on the innate and adaptive immune system in type 2 diabetes and prediabetes. J Clin Endocrinol Metab 95(6):2845–2850

    Article  CAS  PubMed  Google Scholar 

  44. Mitterberger MC, Mattesich M, Zwerschke W (2014) Bariatric surgery and diet-induced long-term caloric restriction protect subcutaneous adipose-derived stromal/progenitor cells and prolong their life span in formerly obese humans. Exp Gerontol 56:106–113

    Article  PubMed  Google Scholar 

  45. Perez LM, Suarez J, Bernal A, de Lucas B, San Martin N, Galvez BG (2016) Obesity-driven alterations in adipose-derived stem cells are partially restored by weight loss. Obesity (Silver Spring) 24(3):661–669

    Article  Google Scholar 

  46. Silva KR, Liechocki S, Carneiro JR et al (2015) Stromal-vascular fraction content and adipose stem cell behavior are altered in morbid obese and post bariatric surgery ex-obese women. Stem Cell Res Ther 6:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tchoukalova Y, Koutsari C, Jensen M (2007) Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia 50(1):151–157

    Article  CAS  PubMed  Google Scholar 

  48. De Girolamo L, Stanco D, Salvatori L et al (2013) Stemness and osteogenic and adipogenic potential are differently impaired in subcutaneous and visceral adipose derived stem cells (ASCs) isolated from obese donors. Int J Immunopathol Pharmacol 26(1 Suppl):11–21

    Article  PubMed  Google Scholar 

  49. Harris LJ, Zhang P, Abdollahi H et al (2010) Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res 163(2):e105–e112

    Article  PubMed  PubMed Central  Google Scholar 

  50. Padoin AV, Braga-Silva J, Martins P et al (2008) Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg 122(2):614–618

    Article  CAS  PubMed  Google Scholar 

  51. Yoshimura K, Shigeura T, Matsumoto D et al (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208(1):64–76

    Article  CAS  PubMed  Google Scholar 

  52. Strong AL, Semon JA, Strong TA et al (2012) Obesity-associated dysregulation of calpastatin and MMP-15 in adipose-derived stromal cells results in their enhanced invasion. Stem Cells 30(12):2774–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carter G, Apostolatos A, Patel R et al (2013) Dysregulated alternative splicing pattern of PKCdelta during differentiation of human preadipocytes represents distinct differences between lean and obese adipocytes. ISRN Obes 2013:161345

    PubMed  PubMed Central  Google Scholar 

  54. Eljaafari A, Robert M, Chehimi M et al (2015) Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation. Diabetes 64(7):2477–2488

    Article  CAS  PubMed  Google Scholar 

  55. Oliva-Olivera W, Leiva Gea A, Lhamyani S et al (2015) Differences in the osteogenic differentiation capacity of omental adipose-derived stem cells in obese patients with and without metabolic syndrome. Endocrinology 156(12):4492–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bullwinkle EM, Parker MD, Bonan NF, Falkenberg LG, Davison SP, DeCicco-Skinner KL (2016) Adipocytes contribute to the growth and progression of multiple myeloma: unraveling obesity related differences in adipocyte signaling. Cancer Lett 380(1):114–121

    Article  CAS  PubMed  Google Scholar 

  57. Chehimi M, Robert M, Bechwaty ME et al (2016) Adipocytes, like their progenitors, contribute to inflammation of adipose tissues through promotion of Th-17 cells and activation of monocytes, in obese subjects. Adipocyte 5(3):275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ejaz A, Mitterberger MC, Lu Z et al (2016) Weight loss upregulates the small GTPase DIRAS3 in human white adipose progenitor cells, which negatively regulates adipogenesis and activates autophagy via Akt-mTOR inhibition. EBioMedicine 6:149–161

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pachon-Pena G, Serena C, Ejarque M et al (2016) Obesity determines the immunophenotypic profile and functional characteristics of human mesenchymal stem cells from adipose tissue. Stem Cells Transl Med 5(4):464–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patel RS, Carter G, El Bassit G et al (2016) Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCdelta) in adipose stem cell niche. Stem Cell Investig 3:2

    PubMed  PubMed Central  Google Scholar 

  61. Serena C, Keiran N, Ceperuelo-Mallafre V et al (2016) Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells 34(10):2559–2573

    Article  CAS  PubMed  Google Scholar 

  62. Mariani S, Di Rocco G, Toietta G, Russo MA, Petrangeli E, Salvatori L (2017) Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia. Endocrine 57(3):455–463

    Article  CAS  PubMed  Google Scholar 

  63. Mastrangelo A, Panadero MI, Perez LM et al (2016) New insight on obesity and adipose-derived stem cells using comprehensive metabolomics. Biochem J 473(14):2187–2203

    Article  CAS  PubMed  Google Scholar 

  64. Togliatto G, Dentelli P, Gili M et al (2016) Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 40(1):102–111

    Article  CAS  Google Scholar 

  65. Zhang T, Tseng C, Zhang Y et al (2016) CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat Commun 7:11674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marcelin G, Ferreira A, Liu Y et al (2017) A PDGFRalpha-mediated switch toward CD9(high) adipocyte progenitors controls obesity-induced adipose tissue fibrosis. Cell Metab 25(3):673–685

    Article  CAS  PubMed  Google Scholar 

  67. Oliva-Olivera W, Coin-Araguez L, Lhamyani S et al (2017) Adipogenic impairment of adipose tissue-derived mesenchymal stem cells in subjects with metabolic syndrome: possible protective role of FGF2. J Clin Endocrinol Metab 102(2):478–487

    PubMed  Google Scholar 

  68. Perez LM, de Lucas B, Lunyak VV, Galvez BG (2017) Adipose stem cells from obese patients show specific differences in the metabolic regulators vitamin D and Gas5. Mol Genet Metab Rep 12:51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oliva-Olivera W, Moreno-Indias I, Coin-Araguez L et al (2017) Different response to hypoxia of adipose-derived multipotent cells from obese subjects with and without metabolic syndrome. PLoS ONE 12(11):e0188324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gesta S, Blüher M, Yamamoto Y, et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA 103(17):6676–6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tchkonia T, Lenburg M, Thomou T, et al (2007) Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab 292(1):E298–E307

    Article  CAS  PubMed  Google Scholar 

  72. Tchkonia T, Giorgadze N, Pirtskhalava T, et al (2006) Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes 55(9):2571–2578

    Article  CAS  PubMed  Google Scholar 

  73. Tchkonia T, Tchoukalova YD, Giorgadze N, et al (2005) Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. Am J Physiol Endocrinol Metab 288:E267–E277

    Article  CAS  PubMed  Google Scholar 

  74. Tchkonia T, Giorgadze N, Pirtskhalava T, et al (2002) Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol 282:R1286–R1296

    Article  CAS  PubMed  Google Scholar 

  75. Perrini S, Laviola L, Cignarelli A, et al (2008) Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells. Diabetologia 51:155–164

    Article  CAS  PubMed  Google Scholar 

  76. Fernández M, Acuña MJ, Reyes M, et al (2010) Proliferation and differentiation of human adipocyte precursor cells: differences between the preperitoneal and subcutaneous compartments. J Cell Biochem 111:659–664

    Article  CAS  PubMed  Google Scholar 

  77. Hauner H, Wabitsch M, Pfeiffer EF (1988) Differentiation of adipocyte precursor cells from obese and nonobese adult women and from different adipose tissue sites. Horm Metab Res Suppl 19:35–39

    CAS  PubMed  Google Scholar 

  78. Shahparaki A, Grunder L, Sorisky A (2002) Comparison of human abdominal subcutaneous versus omental preadipocyte differentiation in primary culture. Metabolism 51:1211–1215

    Article  CAS  PubMed  Google Scholar 

  79. Macotela Y, Emanuelli B, Mori MA, et al (2012) Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61:1691–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Digby JE, Crowley VE, Sewter CP, et al (2000) Depot-related and thiazolidinedione-responsive expression of uncoupling protein 2 (UCP2) in human adipocytes. Int J Obes Relat Metab Disord 24:585–592

    Article  CAS  PubMed  Google Scholar 

  81. Niesler CU, Siddle K, Prins JB (1998) Human preadipocytes display a depot-specific susceptibility to apoptosis. Diabetes 47:1365–1368

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KSV, HCV, SM, KB were involved in conception or design of the work. KSV, HCV, SM, KB, MB, JMB, JM-J, NT, VL contributed to data collection, analysis and interpretation. KSV, HCV, SM, KB, MB, JMB, JM-J, NT, VL were involved in drafting the work or revising it critically for important intellectual content.

Corresponding author

Correspondence to Krishna S. Vyas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Statement of Human and Animal Rights or Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, K.S., Bole, M., Vasconez, H.C. et al. Profile of Adipose-Derived Stem Cells in Obese and Lean Environments. Aesth Plast Surg 43, 1635–1645 (2019). https://doi.org/10.1007/s00266-019-01397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-019-01397-3

Keywords

Navigation