Skip to main content
Log in

Does habitat structural complexity influence the frequency of extra-pair paternity in birds?

  • Review
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Several studies have suggested that vegetation structural complexity can influence the frequency of extra-pair copulations, especially by reducing mating-guarding efficiency. Here we investigate if habitat structural complexity affects broad patterns of extra-pair paternity (EPP) and extra-pair broods (proportion of nests presenting at least one extra-pair young—EPB), specifically testing the prediction that species living in habitats with denser vegetation would have a higher frequency of EPP or EPB. We reviewed studies reporting EPP and EPB levels and categorized structural complexity of vegetation for the study population into five habitat categories. Using both phylogenetic ANOVA and phylogenetic generalized least squares (PGLS), we found no significant effects in either EPP or EPB rates. Under the mating-guarding point of view, possible explanations for the lack of support are (i) trade-offs between the possibilities for females to escape from male surveillance and the difficulty to encounter neighbor extra-pair males by visual orientation in areas with dense vegetation; (ii) the predominance of passerine birds in most categories of vegetation complexity, which are small and agile, such that even less vegetated areas may allow extra-pair copulation to be concealed; (iii) environmental components other than vegetation, such as rocks and cliffs, also could provide concealment opportunities for extra-pair copulation; and (iv) the performance of predawn forays, when habitat complexity may play a weak role on guarding effectiveness. A macroecological understanding of EPP and EPB is a continuing challenge for understanding variation in avian mating systems. Our results contribute to improving the knowledge of the impact of habitat in sexual selection.

Significance statement

Although a vast literature on avian extra-pair paternity (EPP) and its causes exists, the influence of a number of environmental parameters remains poorly addressed. One such parameter is habitat structural complexity. Scattered pieces of evidence from single-species studies have supported the idea that in more complex habitats, i.e., dense vegetation, extra-pair copulation (EPC) is facilitated by concealment opportunities. Here we provide a broad review on studies reporting EPP and EPB (proportion of nests presenting at least one extra-pair young) levels, and we classified study sites into five habitat categories, which were then compared. After controlling for phylogenetic effect, we found no significant effect. Possible explanations for the nonsignificance under a mating-guard perspective can involve trade-offs between the possibilities for females to escape from social surveillance and the difficulty to encounter neighbor extra-pair mates, the availability of habitat components other than vegetation providing concealment for EPC, and the use of strategies such as predawn forays to avoid mate-guarding consequences. Our results further expand the role of habitat in avian sexual selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Bain GC, Hall ML, Mulder RA (2014) Territory configuration moderates the frequency of extra-group mating in superb fairy-wrens. Mol Ecol 23:5619–5627

    Article  PubMed  Google Scholar 

  • Bennett PM, Owens IPF (2002) Evolutionary ecology of birds: life histories, mating systems and extinction. Oxford University Press, Oxford

    Google Scholar 

  • Black JM (1996) Partnerships in birds: the study of monogamy. Oxford University Press, New York

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Method Res 33:261–304

    Article  Google Scholar 

  • Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164:683–695

    Article  Google Scholar 

  • Charmantier A, Perret P (2004) Manipulation of nest-box density affects extra-pair paternity in a population of blue tits (Parus caeruleus). Behav Ecol Sociobiol 56:360–365

    Article  Google Scholar 

  • Chu M, Koenig WD, Godinez A, McIntosh CE, Fleischer RC (2002) Social and genetic monogamy in territorial and loosely colonial populations of Phainopepla (Phainopepla nitens). Auk 119:770–777

    Article  Google Scholar 

  • Del Hoyo J, Elliott A, Sargatal J, Christie DA (2016) The handbook of the birds of the world alive. Lynx editions, http://www.hbw.com

  • Dias RI, Macedo RH (2011) Nest predation versus resources in a Neotropical passerine: constraints of the food limitation hypothesis. Ornis Fennica 88:30–39

    Google Scholar 

  • Double M, Cockburn A (2000) Pre-dawn infidelity: females control extra-pair mating in superb fairy-wrens. Proc R Soc Lond B 267:465–470

    Article  CAS  Google Scholar 

  • Edinger BB (1988) Extra-pair courtship and copulation attempts in northern orioles. Condor 90:546–554

    Article  Google Scholar 

  • Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Kallersjo M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1973) Maximum-likelihood estimation of evolutionary trees from continuous characters. Am J Hum Genet 25:471–492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garland T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, Sunderland

    Google Scholar 

  • Griffith SC (2000) High fidelity on islands: a comparative study of extrapair paternity in passerine birds. Behav Ecol 11:265–273

    Article  Google Scholar 

  • Griffith SC, Stewart IRK, Dawson DA, Owens IPF, Burke T (1999) Contrasting levels of extra-pair paternity in mainland and island populations of the house sparrow (Passer domesticus): is there an “island effect”? Biol J Linn Soc 68:303–316

    Google Scholar 

  • Griffith SC, Owens IPF, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific. Mol Ecol 11:2195–2212

    Article  CAS  PubMed  Google Scholar 

  • Hackett S, Kimball RT, Reddy S et al (2008) Phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  CAS  PubMed  Google Scholar 

  • Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131

    Article  CAS  PubMed  Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Dray S (2010) Adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics 26:1907–1909

    Article  CAS  PubMed  Google Scholar 

  • Lack D (1968) Ecological adaptations for breeding in birds. Methuen, London

    Google Scholar 

  • Ligon JD (1999) The evolution of avian breeding systems. Oxford University Press, New York

    Google Scholar 

  • Mays HL, Ritchison G (2004) The effect of vegetation density on male mate guarding and extra-territorial forays in the yellow-breasted chat (Icteria virens). Naturwissenschaften 91:195–198

    Article  CAS  PubMed  Google Scholar 

  • McKinnon L, Picotin M, Bolduc E, Juillet C, Bêty J (2012) Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can J Zool 90:961–971

    Article  Google Scholar 

  • Neudorf DLH (2004) Extrapair paternity in birds: understanding variation among species. Auk 121:302–307

    Article  Google Scholar 

  • Nyári ÁS, Benz BW, Jønsson KA, Fjeldså J, Moyle RG (2009) Phylogenetic relationships of fantails (Aves: Rhipiduridae). Zool Scr 38:553–561

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Paradis E (2014) An introduction to the phylogenetic comparative method. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology, 1st edn. Springer, New York, pp 3–18

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2017) nlme: linear and nonlinear mixed effects models. CRAN, https://cran.r-project.org/web/packages/nlme/nlme.pdf

  • Quillfeldt P, Schmoll T, Peter H-U, Epplen JT, Lubjuhn T (2001) Genetic monogamy in Wilson’s storm-petrel. Auk 118:242–248

    Article  Google Scholar 

  • Quillfeldt P, Masello JF, Segelbacher G (2012) Extra-pair paternity in seabirds: a review and case study of thin-billed prions Pachyptila belcheri. J Ornithol 153:367–373

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

    Google Scholar 

  • Reding L (2015) Increased hatching success as a direct benefit of polyandry in birds. Evolution 69:264–270

    Article  PubMed  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Rubolini D, Liker A, Garamszegi LZ, Møller AP, Saino N (2015) Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: a primer. Curr Zool 61:959–965

    Article  Google Scholar 

  • Sherman PW, Morton ML (1988) Extra-pair fertilizations in mountain white-crowned sparrows. Behav Ecol Sociobiol 22:413–420

    Article  Google Scholar 

  • Spottiswoode C, Møller AP (2004) Extrapair paternity, migration, and breeding synchrony in birds. Behav Ecol 15:41–57

    Article  Google Scholar 

  • Stewart SLM, Westneat DF, Ritchison G (2010) Extra-pair paternity in eastern bluebirds: effects of manipulated density and natural patterns of breeding synchrony. Behav Ecol Sociobiol 64:463–473

    Article  Google Scholar 

  • Stutchbury BJ, Morton ES (1995) The effect of breeding synchrony on extra-pair mating systems in songbirds. Behaviour 132:675–690

    Article  Google Scholar 

  • Tryjanowski P, Antczak M, Hromada M (2007) More secluded places for extra-pair copulations in the great grey shrike Lanius excubitor. Behaviour 144:23–31

    Article  Google Scholar 

  • Vatka E, Orell M, Rytkönen S (2011) Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Glob Change Biol 17:3002–3009

    Article  Google Scholar 

  • West RJD (2014) The evolution of large brain size in birds is related to social, not genetic, monogamy. Biol J Linn Soc 111:668–678

    Article  Google Scholar 

  • Westneat DF, Sherman PW (1997) Density and extra-pair fertilizations in birds: a comparative analysis. Behav Ecol Sociobiol 41:205–215

    Article  Google Scholar 

  • Westneat DF, Stewart IRK (2003) Extra-pair paternity in birds: causes, correlates, and conflict. Annu Rev Ecol Evol S 34:365–396

    Article  Google Scholar 

  • Westneat DF, Sherman PW, Morton ML (1990) The ecology and evolution of extra-pair copulations in birds. Curr Ornithol 7:331–369

    Google Scholar 

  • Wiersma P, Muñoz-Garcia A, Walker A, Williams JB (2007) Tropical birds have a slow pace of life. Proc Natl Acad Sci U S A 104:9340–9345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Hu Y, Lang Z, Fang B, Guo W, Zhang Q, Pan X, Lu X (2016) How much do we know about the breeding biology of bird species in the world? J Avian Biol. doi:10.1111/jav.00934

  • Yuta T, Koizumi I (2016) Does nest predation risk affect the frequency of extra-pair paternity in a socially monogamous passerine? J Avian Biol 47:153–158

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Universidade Federal de São Carlos and the University of Kentucky for logistical support and to L.J. Revell, L. Harmon, and M. Alfaro for important discussions on the statistical methods applied here. CB received fellowships from Fundação do Amparo à Pesquisa do Estado de São Paulo—FAPESP (#2014/15456-2 and #2013/21209-5). We also especially thank two anonymous referees for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Biagolini-Jr..

Ethics declarations

Ethical statement and ethical approval

As this is a review article, the statement on the welfare of animals is not applicable.

Funding

This study was funded by Fundação do Amparo à Pesquisa do Estado de São Paulo—FAPESP (#2014/15456-2 and #2013/21209-5). FAPESP is a public foundation, funded by the taxpayers of the State of São Paulo, Brazil. The grant proposals are peer-reviewed blindly by area researchers.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability statement

The datasets analysed during the current study are available in the Supplementary material.

Additional information

Communicated by S. Pruett-Jones

Electronic supplementary material

ESM 1

(DOC 32.0 kb).

ESM 2

(PNG 286 kb).

ESM 3

(DOCX 90 kb).

ESM 4

(DOCX 37 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biagolini-Jr., C., Westneat, D.F. & Francisco, M.R. Does habitat structural complexity influence the frequency of extra-pair paternity in birds?. Behav Ecol Sociobiol 71, 101 (2017). https://doi.org/10.1007/s00265-017-2329-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-017-2329-x

Keywords

Navigation