Skip to main content
Log in

High social density increases foraging and scouting rates and induces polydomy in Temnothorax ants

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aleksiev AS, Sendova-Franks AB, Franks NR (2007) Nest ‘moulting’ in the ant Temnothorax albipennis. Anim Behav 74:567–575

    Article  Google Scholar 

  • Alexander RD (1974) The evolution of social behaviour. Ann Rev Ecol Syst 5:325–383

    Article  Google Scholar 

  • Anderson C, McShea DW (2001) Individual versus social complexity, with particular reference to ant colonies. Biol Rev 76:211–237

    Article  PubMed  CAS  Google Scholar 

  • Ballerini M, Calbibbo N, Candeleir R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci U S A 105:1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Ann Rev Entomol 46:413–440

    Article  CAS  Google Scholar 

  • Bigley WS, Vinson SB (1975) Characterization of a brood pheromone isolated from the sexual brood of the imported fire ant, Solenopsis invicta. Ann Entomol Soc Am 68:301–304

    CAS  Google Scholar 

  • Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12:245–257

    Article  Google Scholar 

  • Buhl J, Gautrais J, Deneubourg JL, Theraulaz G (2004) Nest excavation in ants: group size effects on the size and structure of tunneling networks. Naturwissenschaften 91:602–606

    Article  PubMed  CAS  Google Scholar 

  • Cao TT, Dornhaus A (2008) Ants under crowded conditions consume more energy. Biol Lett 4:613–615

    Article  PubMed  Google Scholar 

  • Cao TT, Dornhaus A (2012a) Ants use pheromone markings in emigrations to move closer to food-rich areas. Insect Soc 59:87–92

    Article  Google Scholar 

  • Cao TT, Dornhaus A (2012b) Larger laboratory colonies consume proportionally less energy and have lower per capita brood production in Temnothorax ants. Insect Soc 60:1–5

    Article  Google Scholar 

  • Cao TT, Hyland KM, Malechuk A, Lewis LA, Schneider SS (2007) The influence of the vibration signal on worker interactions with the nest and nest mates in established and newly founded colonies of the honey bee, Apis mellifera. Insect Soc 54:144–149

    Article  Google Scholar 

  • Cao TT, Hyland KM, Malechuk A, Lewis LA, Schneider SS (2009) The effect of repeated vibration signals on worker behavior in established and newly founded colonies of the honey bee, Apis mellifera. Behav Ecol Sociobiol 63:521–529

    Article  Google Scholar 

  • Cassill DL, Tschinkel WR (1995) Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim Behav 50:801–813

    Article  Google Scholar 

  • Debout G, Schatz B, Elias M, McKey D (2007) Polydomy in ants: what we know, what we think we know, and what remains to be done. Biol J Linn Soc 90:319–348

    Article  Google Scholar 

  • Dornhaus A, Holley JA, Franks NR (2009) Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behav Ecol 20:922–929

    Article  Google Scholar 

  • Drury J, Cocking C, Reicher S, Burton A, Schofield D, Hardwick A, Graham D, Langston P (2009) Cooperation versus competition in a mass emergency evacuation: a new laboratory simulation and a new theoretical model. Behav Res Methods 41:957–970

    Google Scholar 

  • Evans TA, Inta R, Lai JCS, Lenz M (2007) Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insect Soc 54:374–382

    Article  Google Scholar 

  • Foitzik S, Heinze J (2001) Microgeographic genetic structure and intraspecific parasitism in the ant Leptothorax nylanderi. Ecol Entomol 26:449–456

    Article  Google Scholar 

  • Fonseca CR (1993) Nesting space limits colony size of the plant-ant Pseudomyrmex concolor. Oikos 67:473–482

    Article  Google Scholar 

  • Franks NR, Sendovafranks AB (1992) Brood sorting by ants—distributing the workload over the work surface. Behav Ecol Sociobiol 30:109–123

    Article  Google Scholar 

  • Frommen JG, Hiermes M, Bakker TCM (2009) Disentangling the effects of group size and density on shoaling decisions of three-spined sticklebacks (Gasterosteus aculeatus). Behav Ecol Sociobiol 63:1141–1148

    Article  Google Scholar 

  • Gardner A, Grafen A (2009) Capturing the superorganism: a formal theory of group adaptation. J Evol Biol 22:659–671

    Article  PubMed  CAS  Google Scholar 

  • Gillooly JF, Hou C, Kaspari M (2010) Eusocial insects as superorganisms. Commun Integr Biol 3:360–362

    Article  PubMed  Google Scholar 

  • Gordon DM, Mehdiabadi NJ (1999) Encounter rate and task allocation in harvester ants. Behav Ecol Sociobiol 45:370–377

    Article  Google Scholar 

  • Gordon DM, Paul RE, Thorpe K (1993) What is the function of encounter patterns in ant colonies? Anim Behav 45:1083–1100

    Article  Google Scholar 

  • Gordon DM, Holmes S, Nacu S (2008) The short-term regulation of foraging in harvester ants. Behav Ecol 19:217–222

    Article  Google Scholar 

  • Greene MJ, Gordon DM (2007) Interaction rate informs harvester ant task decisions. Behav Ecol 18:451–455

    Article  Google Scholar 

  • Hamilton WD (1964) Genetical evolution of social behaviour I. J Theor Biol 7:1

    Article  PubMed  CAS  Google Scholar 

  • Hoare DJ, Couzin ID, Godin JGJ, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67:155–164

    Article  Google Scholar 

  • Holbrook CT, Barden PM, Fewell JH (2011) Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus. Behav Ecol 22:960–966

    Article  Google Scholar 

  • Hölldobler B (1999) Multimodal signals in ant communication. J Comp Physiol 184:129–141

    Article  Google Scholar 

  • Hou C, Kaspari M, Zanden HBV, Gillooly JF (2010) Energetic basis of colonial living in social insects. Proc Natl Acad Sci U S A 107:3634–3638

    Article  PubMed  CAS  Google Scholar 

  • Hudson RE, Aukema JE, Rispe C, Roze D (2002) Altruism, cheating, and anticheater adaptations in cellular slime molds. Am Nat 160:31–43

    Article  PubMed  Google Scholar 

  • Hyland KM, Cao TT, Malechuk AM, Lewis LA, Schneider SS (2007) Vibration signal behaviour and the use of modulatory communication in established and newly founded honeybee colonies. Anim Behav 73:541–551

    Article  Google Scholar 

  • Karsai I, Wenzel JW (1998) Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proc Natl Acad Sci U S A 95:8665–8669

    Article  PubMed  CAS  Google Scholar 

  • Korb J, Heinze J (2004) Multilevel selection and social evolution of insect societies. Naturwissenschaften 91:291–304

    Article  PubMed  CAS  Google Scholar 

  • Lei WJ, Li AG, Gao R, Hao XP, Deng BS (2012) Simulation of pedestrian crowds’ evacuation in a huge transit terminal subway station. Phys Stat Mech Appl 391:5355–5365

    Article  Google Scholar 

  • Lin N, Michener CD (1972) Evolution of sociality in insects. Q Rev Biol 47:131

    Article  Google Scholar 

  • Mallon EB, Franks NR (2000) Ants estimate area using Buffon’s needle. Proc R Soc B 267:765–770

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Milgram S, Bickman L, Berkowit L (1969) Note on drawing power of crowds of different size. J Pers Soc Psychol 13:79

    Article  Google Scholar 

  • Monnin T, Ratnieks FLW (2001) Policing in queenless ponerine ants. Behav Ecol Sociobiol 50:97–108

    Article  Google Scholar 

  • Mugford ST, Mallon EB, Franks NR (2001) The accuracy of Buffon’s needle: a rule of thumb used by ants to estimate area. Behav Ecol 12:655–658

    Article  Google Scholar 

  • Nicolis SC, Theraulaz G, Deneubourg JL (2005) The effect of aggregates on interaction rate in ant colonies. Anim Behav 69:535–540

    Article  Google Scholar 

  • O’Donnell S, Bulova SJ (2007) Worker connectivity: a review of the design of worker communication systems and their effects on task performance in insect societies. Insect Soc 54:203–210

    Article  Google Scholar 

  • Pacala SW, Gordon DM, Godfray HCJ (1996) Effects of social group size on information transfer and task allocation. Evol Ecol 10:127–165

    Article  Google Scholar 

  • Parrish JK, Edelstein-Keshet L (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284:99–101

    Article  PubMed  CAS  Google Scholar 

  • Partridge LW, Partridge KA, Franks NR (1997) Field survey of a monogynous leptothoracine ant (Hymenoptera, Formicidae): evidence of seasonal polydomy? Insect Soc 44:75–83

    Article  Google Scholar 

  • Pereira H, Gordon DM (2001) A trade-off in task allocation between sensitivity to the environment and response time. J Theor Biol 208:165–184

    Google Scholar 

  • Pie MR, Rosengaus RB, Traniello JFA (2004) Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J Theor Biol 226:45–51

    Article  PubMed  Google Scholar 

  • Poitrineau K, Mitesser O, Poethke HJ (2009) Workers, sexuals, or both? Optimal allocation of resources to reproduction and growth in annual insect colonies. Insect Soc 56:119–129

    Google Scholar 

  • Pratt SC (2005a) Behavioral mechanisms of collective nest-site choice by the ant Temnothorax curvispinosus. Insect Soc 52:383–392

    Article  Google Scholar 

  • Pratt SC (2005b) Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behav Ecol 16:488–496

    Article  Google Scholar 

  • Queller DC, Strassmann JE (1998) Kin selection and social insects. Bioscience 48:165–175

    Article  Google Scholar 

  • Reiczigel J, Lang Z, Rozsa L, Tothmeresz B (2008) Measures of sociality: two different views of group size. Anim Behav 75:715–721

    Article  Google Scholar 

  • Rifkin JL, Nunn CL, Garamszegi LZ (2012) Do animals living in larger groups experience greater parasitism? A meta-analysis. Am Nat 180:70–82

    Article  PubMed  Google Scholar 

  • Riveros AJ, Enquist BJ (2011) Metabolic scaling in insects supports the predictions of the WBE model. J Insect Physiol 57:688–693

    Article  PubMed  CAS  Google Scholar 

  • Roberts ER, Daniels S, Wardlaw JC, Raybould AF, Pearson JE, Pearson B (1999) Seasonal polydomy: its possible causes and its consequences for kinship and intra-specific parasitism in Leptothorax tuberum (Hymenoptera: Formicidae). Sociobiology 33:199–214

    Google Scholar 

  • Rueppell O, Kaftanouglu O, Page RE (2009) Honey bee (Apis mellifera) workers live longer in small than in large colonies. Exp Gerontol 44:447–452

    Google Scholar 

  • Scharf I, Modlmeier AP, Fries S, Tirard C, Foitzik S (2012) Characterizing the collective personality of ant societies: aggressive colonies do not abandon their home. PLoS One 7(3):e33314

    Google Scholar 

  • Schmid-Hempel P, Winston ML, Ydenberg RC (1993) Foraging of individual workers in relation to colony state in the social Hymenoptera. Can Entomol 125:129–160

    Google Scholar 

  • Schmolke A (2009) Benefits of dispersed central-place foraging: an individual-based model of a polydomous ant colony. Am Nat 173:772–778

    Article  PubMed  Google Scholar 

  • Schneider SS, Lewis LA (2004) The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35:117–131

    Article  Google Scholar 

  • Seeley T (1977) Measurement of nest cavity volume by honey bee (Apis mellifera). Behav Ecol Sociobiol 2:201–227

    Google Scholar 

  • Seeley TD (1997) Honey bee colonies are group-level adaptive units. Am Nat 150:S22–S41

    Article  PubMed  Google Scholar 

  • Seeley TD, Visscher PK (2004) Quorum sensing during nest-site selection by honeybee swarms. Behav Ecol Sociobiol 56:594–601

    Article  Google Scholar 

  • Sempo G, Depickere S, Detrain C (2006) How brood influences caste aggregation patterns in the dimorphic ant species Pheidole pallidula. Insect Soc 53:241–248

    Article  Google Scholar 

  • Sendova-Franks AB, Scholes SR, Franks NR, Melhuish C (2004) Brood sorting by ants: two phases and differential diffusion. Anim Behav 68:1095–1106

    Article  Google Scholar 

  • Shik JZ (2008) Ant colony size and the scaling of reproductive effort. Funct Ecol 22:674–681

    Google Scholar 

  • Smith AA, Overson RP, Holldobler B, Gadau J, Liebig J (2012) The potential for worker reproduction in the ant Aphaenogaster cockerelli and its absence in the field. Insect Soc 59:411–416

    Article  Google Scholar 

  • Strassmann JE, Queller DC (2011) How social evolution theory impacts our understanding of development in the social amoeba Dictyostelium. Dev Growth Diff 53:597–607

    Article  Google Scholar 

  • Strassmann JE, Zhu Y, Queller DC (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408:965–967

    Article  PubMed  CAS  Google Scholar 

  • Thomas ML, Elgar MA (2003) Colony size affects division of labour in the ponerine ant Rhytidoponera metallica. Naturwissenschaften 90:88–92

    PubMed  CAS  Google Scholar 

  • Tschinkel WR (1993) Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol Monogr 63:425–457

    Article  Google Scholar 

  • van Wilgenburg E, Elgar MA (2007) Colony structure and spatial distribution of food resources in the polydomous meat ant Iridomyrmex purpureus. Insect Soc 54:5–10

    Article  Google Scholar 

  • Visscher PK (1996) Reproductive conflict in honey bees: a stalemate of worker egg-laying and policing. Behav Ecol Sociobiol 39:237–244

    Article  Google Scholar 

  • Visscher PK (2007) Group decision making in nest-site selection among social insects. Annu Rev Entomol 52:255–275

    Article  PubMed  CAS  Google Scholar 

  • Walsh JP, Tschinkel WR (1974) Brood recognition by contact pheromone in the red imported fire ant, Solenopsis invicta. Anim Behav 22:695–704

    Article  Google Scholar 

  • Waters JS, Holbrook CT, Fewell JH, Harrison JF (2010) Allometric scaling of metabolism, growth, and activity in whole colonies of the seed-harvester ant Pogonomyrmex californicus. Am Nat 176:501–510

    Article  PubMed  Google Scholar 

  • Wilson EO, Hölldobler B (2005) Eusociality: origin and consequences. Proc Natl Acad Sci U S A 102:13367–13371

    Article  PubMed  CAS  Google Scholar 

  • Wynne-Edwards VC (1962) Animal dispersion in relation to social behavior. Oliver & Boyd, London

    Google Scholar 

Download references

Acknowledgments

I am grateful to the editor and two anonymous reviewers whose suggestions and insights helped to significantly improve the original manuscript. I thank Robert Corral for help with collecting foraging, scouting, and polydomy data. Salley Kwon helped with measuring nest area and analyzing the social density of field colonies. The Department of Ecology and Evolution Biology at the University of Arizona provided funding for this work.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan T. Cao.

Additional information

Communicated by W. O. H. Hughes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, T.T. High social density increases foraging and scouting rates and induces polydomy in Temnothorax ants. Behav Ecol Sociobiol 67, 1799–1807 (2013). https://doi.org/10.1007/s00265-013-1587-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-013-1587-5

Keywords

Navigation