Skip to main content
Log in

Correlated evolutionary changes in Drosophila female genitalia reduce the possible infection risk caused by male copulatory wounding

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Male and female genitalia often show corresponding morphologies indicating coevolutionary processes, but ongoing debate exists as to the driving mechanisms of such coevolution between the sexes. Using interspecific matings between Drosophila santomea and Drosophila yakuba, this study provides evidence that micron-scale differences in male and female genital morphology and resultant mismatches between them during copulation cause wounding and infection risk to females. Male D. yakuba possesses a pair of sclerotized spikes (ventral branches of the basal processes) on the aedeagus, while these projections are much more rounded in D. santomea. D. yakuba females possess a pair of cavities with sclerotized platelets that receive the male genital spikes during copulation, whereas D. santomea females lack these cavities. The pointed genital spikes cause wounding in almost all females of D. santomea mating with male D. yakuba. Furthermore, when fluorescent-labeled microbeads were applied to male genitalia, they invaded the female hemocoel through the copulatory wounds significantly more frequently in heterospecific matings. Although the sclerotized platelets in the genital cavities prevented precise quantification of the extent of wounding in D. yakuba females, a similarly enhanced risk of microbial invasion was detected for the reciprocal heterospecific cross. All beads detected in the female hemocoel were immobilized by hemolymph clotting, indicating an effective immune response. The observed enhanced mating costs due to genital mismatch support the view that corresponding morphologies in female genitalia represent counteradaptations to harmful male behaviors, instead of being evolutionary adaptations to discriminate the species or genetic quality of male mates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnqvist G, Rowe L (2002) Correlated evolution of male and female morphologies in water striders. Evolution 56:936–947

    PubMed  Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual conflict. Princeton University Press, Princeton

    Google Scholar 

  • Cayetano L, Maklakov AA, Brooks RC, Bonduriansky R (2011) Evolution of male and female genitalia following release from sexual selection. Evolution 65:2171–2183

    Article  PubMed  Google Scholar 

  • Chang AS (2004) Conspecific sperm precedence in sister species of Drosophila with overlapping ranges. Evolution 58:781–789

    PubMed  Google Scholar 

  • Cordero C, Eberhard WG (2003) Female choice of antagonistic male adaptations: a critical review of current research. J Evol Biol 16:1–6

    Article  PubMed  CAS  Google Scholar 

  • Cox C, Gilmore M (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75:1565–1576

    Article  PubMed  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland

    Google Scholar 

  • Coyne JA, Kim SY, Chang AS, Lachaise D, Elwyn S (2002) Sexual isolation between two siblings with overlapping ranges: Drosophila santomea and D. yakuba. Evolution 56:2424–2434

    PubMed  Google Scholar 

  • Dufour L (1844) Anatomie générale des Diptères. Ann Sci Nat 1:244–264

    Google Scholar 

  • Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge

    Google Scholar 

  • Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton

    Google Scholar 

  • Eberhard WG (2010) Rapid divergent evolution of genitalia: theory and data updated. In: Leonard JL, Córdoba-Aguilar A (eds) The evolution of primary sexual characters in animals. Oxford University Press, Oxford, pp 40–78

    Google Scholar 

  • Edvardsson M, Tregenza T (2005) Why do male Callosobruchus maculatus harm their mates? Behav Ecol 16:788–793

    Article  Google Scholar 

  • Ferveur JF, Cobb M (2010) Behavioral and evolutionary roles of cuticular hydrocarbons in Diptera. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 325–343

    Chapter  Google Scholar 

  • Gay L, Hosken DJ, Eady P, Vasudev R, Tregenza T (2011) The evolution of harm–effect of sexual conflicts and population size. Evolution 65:725–737

    Article  PubMed  Google Scholar 

  • Grimont F, Grimont PAD (2005) Genus XXXIV Serratia. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2, part B. Springer, New York, pp 799–811

    Google Scholar 

  • Haine ER, Rolff J, Siva-Jothy MT (2007) Functional consequences of blood clotting in insects. Dev Comp Immunol 31:456–464

    Article  PubMed  CAS  Google Scholar 

  • Hauben L, Van Gijsegem F, Swings J (2005) Genus XXIV Pectobacterium. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2, Part B. Springer, New York, pp 721–730

    Google Scholar 

  • Hosken DJ, Stockley P (2004) Sexual selection and animal genitalia. Trends Ecol Evol 19:87–93

    Article  PubMed  Google Scholar 

  • Hotzy C, Arnqvist G (2009) Sperm competition favors harmful males in seed beetles. Curr Biol 19:404–407

    Article  PubMed  CAS  Google Scholar 

  • Kamimura Y (2007) Twin intromittent organs of Drosophila for traumatic insemination. Biol Lett 3:401–404

    Article  PubMed  Google Scholar 

  • Kamimura Y (2010) Copulation anatomy of Drosophila melanogaster (Diptera: Drosophilidae): wound-making organs and their possible roles. Zoomorphology 129:163–174

    Article  Google Scholar 

  • Kamimura Y, Mitsumoto H (2011) Comparative copulation anatomy of the Drosophila melanogaster species complex (Diptera: Drosophilidae). Entomol Sci 14:399–410

    Article  Google Scholar 

  • Kamimura Y, Mitsumoto H (2012) Lock-and-key structural isolation between sibling Drosophila species. Entomol Sci 15:197–201

    Article  Google Scholar 

  • Kamimura Y, Polak M (2011) Does surgical manipulation of Drosophila intromittent organs affect insemination success? Proc R Soc Lond B 278:815–816

    Article  Google Scholar 

  • Kraaijeveld AR, Wertheim B (2009) Costs and genomic aspects of Drosophila immunity to parasites and pathogens. In: Rolff J, Reynolds SE (eds) Insect infection and immunity. Oxford University Press, Oxford, pp 187–205

    Chapter  Google Scholar 

  • Lachaise D, Harry M, Solignac M, Lemeunier F, Bénassi V, Cariou M-L (2000) Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé. Proc R Soc Lond B 193:275–294

    Google Scholar 

  • Lazzaro BP, Sceurman BK, Clark AG (2004) Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303:1873–1876

    Article  PubMed  CAS  Google Scholar 

  • Llopart A, Lachaise D, Coyne JA (2005) An anomalous hybrid zone in Drosophila. Evolution 59:2602–2607

    PubMed  Google Scholar 

  • Markow TA, O’Grady PM (2006) Drosophila: a guide to species identification and use. Academic, San Diego

    Google Scholar 

  • Masly JP (2012) 170 years of “lock-and-key”: genital morphology and reproductive isolation. Int J Evol Biol ID 247352. doi:10.1155/2012/247352

  • Matute DR, Coyne JA (2010) Intrinsic reproductive isolation between two sister species of Drosophila. Evolution 64:903–920

    Article  PubMed  Google Scholar 

  • Matute DR, Novak CJ, Coyne JA (2009) Temperature-based extrinsic reproductive isolation in two species of Drosophila. Evolution 63:595–612

    Article  PubMed  Google Scholar 

  • McPeek MA, Shen L, Farid H (2009) The correlated evolution of three-dimensional reproductive structures between male and female damselflies. Evolution 63:73–83

    Article  PubMed  Google Scholar 

  • Moehring AJ, Llopart A, Elwyn S, Coyne JA, Mackay TFC (2006) The genetic basis of postzygotic reproductive isolation between Drosophila santomea and D. yakuba due to hybrid male sterility. Genetics 173:225–233

    Article  PubMed  CAS  Google Scholar 

  • Morrow EH, Arnqvist G (2003) Costly traumatic insemination and a female counteradaptation in bed bugs. Proc R Soc B 270:2377–2381

    Article  PubMed  Google Scholar 

  • Nehme NT, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3:e173

    Article  PubMed  Google Scholar 

  • Neville C (1998) The significance of insect cuticle. Microsc Anat Invert 11A:151–176

    Google Scholar 

  • Pathak JPN (1993) Cell-mediated defence reactions in insects. In: Pathak JPN (ed) Insect immunity. Kluwer, Dordrecht, pp 47–58

    Google Scholar 

  • Poiani A (2006) Complexity of seminal fluid: a review. Behav Ecol Sociobiol 60:289–310

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ravi Ram K, Wolfner MF (2007) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47:427–445

    Article  PubMed  CAS  Google Scholar 

  • Ravi Ram K, Ji S, Wolfner MF (2005) Fates and targets of male accessory gland proteins in mated female Drosophila melanogaster. Insect Biochem Mol Biol 35:1059–1071

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt K, Siva-Jothy MT (2007) Biology of the bedbugs (Cimicidae). Ann Rev Entomol 52:351–374

    Article  CAS  Google Scholar 

  • Reinhardt K, Naylor R, Siva-Jothy MT (2003) Reducing a cost of traumatic insemination: female bed bugs evolve a unique organ. Proc R Soc B 270:2371–2375

    Article  PubMed  Google Scholar 

  • Reinhardt K, Naylor R, Siva-Jothy MT (2005) Potential sexual transmission of environmental microbes in a traumatically inseminating insect. Ecol Entomol 30:607–611

    Article  Google Scholar 

  • Rönn J, Katvala M, Arnqvist G (2007) Coevolution between harmful male genitalia and female resistance in seed beetles. Proc Natl Acad Sci U S A 95:6217–6221

    Google Scholar 

  • Shirasu-Hiza MM, Schneider DA (2007) Confronting physiology: how do infected flies die. Cell Microbiol 9:2775–2783

    Article  PubMed  CAS  Google Scholar 

  • Siva-Jothy MT (2006) Trauma, diseases and collateral damage: conflict in cimicids. Philos Trans R Soc B 361:269–275

    Article  CAS  Google Scholar 

  • Siva-Jothy MT (2009) Reproductive immunity. In: Rolff J, Reynolds SE (eds) Insect infection and immunity. Oxford University Press, Oxford, pp 241–251

    Chapter  Google Scholar 

  • Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecology perspective. Adv Insect Physiol 32:1–48

    Article  CAS  Google Scholar 

  • Stewart AD, Hannes AM, Mirzatuny A, Rice WR (2008) Sexual conflict is not counterbalanced by good genes in the laboratory Drosophila melanogaster model system. J Evol Biol 21:1808–1813

    Article  PubMed  CAS  Google Scholar 

  • Teuschl Y, Hosken DJ, Blanckenhorn WU (2007) Is reduced female survival after mating a by-product of male–male competition in the dung fly Sepsis cynipsea? BMC Evol Biol 7:94

    Article  Google Scholar 

  • Theopold U, Fabbri DL, Scherfer C, Schmidt O (2002) The coagulation of insect hemolymph. Cell Mol Life Sci 59:363–372

    Article  PubMed  CAS  Google Scholar 

  • Tomaru M, Yamada H (2011) Courtship of Drosophila, with a special interest in courtship songs. Low Temp Sci 69:61–85

    Google Scholar 

  • Vahed K (2002) Coercive copulation in the alpine bushcricket Anonconotus alpinus Yersin (Tettigonidae: Tettigoniinae: Platycleidini). Ethology 108:1065–1075

    Article  Google Scholar 

  • Wen S-Y, Li Y-F (2011) An evolutionary view on courtship behavior of Drosophila: from a comparative approach. Low Temp Sci 69:87–100

    Google Scholar 

  • Wigby S, Domanitskaya EV, Choffat Y, Kubli E, Chapman T (2008) The effect of mating on immunity can be masked by experimental piercing in female Drosophila melanogaster. J Insect Physiol 54:414–420

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I thank T. Ide and the Drosophila Species Stock Center (University of California, San Diego) for the fly strains, H. Kamimura for assistance in rearing, A. Kamimura for providing important references, and J.F.A. Treniello and an anonymous reviewer for their helpful comments on an earlier version of the manuscript. This study was supported by a Grant-in-Aid for Scientific Research (no. 22770058) from the Japan Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Kamimura.

Additional information

Communicated by M. Elgar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamimura, Y. Correlated evolutionary changes in Drosophila female genitalia reduce the possible infection risk caused by male copulatory wounding. Behav Ecol Sociobiol 66, 1107–1114 (2012). https://doi.org/10.1007/s00265-012-1361-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-012-1361-0

Keywords

Navigation