Skip to main content
Log in

Genetic influence on caste determination underlying the asexual queen succession system in a termite

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The question of how reproductives and sterile workers differentiate within eusocial groups has long been a core issue in the study of social insects. Recent studies have shown that not only environmental factors but also genetic factors affect caste differentiation. In the termite Reticulitermes speratus, queens produce their replacements (neotenics) asexually but use normal sexual reproduction to produce other colony members. Here, we demonstrate a genetic influence on caste determination underlying the asexual queen succession system in this termite species. Thelytoky in termites is accomplished by automixis with terminal fusion, yielding almost completely homozygous offspring; thus, parthenogenetically and sexually produced offspring profoundly differ in heterozygosity. An analysis of the relationship between the reproductive dominance of female neotenics obtained from experimentally orphaned colonies and their genotypes at five microsatellite loci showed that homozygosity at two loci influenced the developmental priority and/or reproductive quality of neotenics. These results suggest the existence of a multi-locus system affecting the queen fecundity and explain why parthenogens have genetic priority to become neotenics in this termite species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams ES, Atkinson L (2008) Queen fecundity and reproductive skew in the termite Nasutitermes corniger. Insectes Soc 55:28–36. doi:10.1007/s00040-007-0970-5

    Article  Google Scholar 

  • Atkinson L, Adams ES (1997) The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proc R Soc Lond B 264:1131–1136. doi:10.1098/rspb.1997.0156

    Article  Google Scholar 

  • Cahan SH, Parker JD, Rissing SW, Johnson RA, Polony TS, Weiser MD, Smith DR (2002) Extreme genetic differences between queens and workers in hybridizing Pogonomyrmex harvester ants. Proc R Soc Lond B 269:1871–1877. doi:10.1098/rspb.2002.2061

    Article  Google Scholar 

  • Dronnet S, Bagneres AG, Juba TR, Vargo EL (2004) Polymorphic microsatellite loci in the European subterranean termite, Reticulitermes santonensis Feytaud. Mol Ecol Notes 4:127–129. doi:10.1111/j.1471-8286.2004.00600.x

    Article  CAS  Google Scholar 

  • Fletcher DJC, Ross KG (1985) Reguration of reproduction in eusocial Hymenoptera. Annu Rev Entomol 30:319–343

    Article  Google Scholar 

  • Fournier D, Estoup A, Orivel J, Foucaud J, Jourdan H, Le Breton J, Keller L (2005) Clonal reproduction by males and females in the little fire ant. Nature 435:1230–1234. doi:10.1038/nature03705

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Lo N, Miyata H, Kitade O (2007) Sex-linked genetic influence on caste determination in a termite. Science 318:985–987. doi:10.1126/science.1146711

    Article  PubMed  CAS  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hughes WOH, Boomsma J (2008) Genetic royal cheats in leaf-cutting ant societies. Proc Natl Acad Sci USA 105:5150–5153. doi:10.1073/pnas.0710262105

    Article  PubMed  CAS  Google Scholar 

  • Julian GE, Fewell JH, Gadau J, Johnson RA, Larrabee D (2002) Genetic determination of the queen caste in an ant hybrid zone. Proc Natl Acad Sci USA 99:8157–8160. doi:10.1073/pnas.112222099

    Article  PubMed  CAS  Google Scholar 

  • Kerr WE (1950) Genetic determination of castes in genus Melipona. Genetics 35:143–152

    PubMed  CAS  Google Scholar 

  • Korb J, Weil T, Hoffmann K, Foster KR, Rehli M (2009) A gene necessary for reproductive suppression in termites. Science 324:758. doi:10.1126/science.1170660

    Article  PubMed  CAS  Google Scholar 

  • Lüscher M (1960) Hormonal control of caste differentiation in termites. Ann N Y Acad Sci 89:549–563

    Article  Google Scholar 

  • Matsuura K (2010) Sexual and asexual reproduction in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Heidelberg, pp 255–277

  • Matsuura K, Fujimoto M, Goka K (2004) Sexual and asexual colony foundation and the mechanism of facultative parthenogenesis in the termite Reticulitermes speratus (Isoptera, Rhinotermitidae). Insectes Soc 51:325–332. doi:10.1007/s00040-004-0746-0

    Article  Google Scholar 

  • Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, Tsuji K (2009) Queen succession through asexual reproduction in termites. Science 323:1687. doi:10.1126/science.1169702

    Article  PubMed  CAS  Google Scholar 

  • Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proc Natl Acad Sci USA 107:12963–12968. doi:10.1073/pnas.1004675107

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Kamikouchi A, Sawata M, Takeuchi H, Natori S, Kubo T, Matsumoto T (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proc Natl Acad Sci USA 24:13874–13879

    Article  Google Scholar 

  • Ohkawara K, Nakayama M, Satoh A, Trindl A, Heinze J (2006) Clonal reproduction and genetic caste differences in a queen-polymorphic ant, Vollenhovia emeryi. Biol Lett 2:359–363. doi:10.1098/rsbl.2006.0491

    Article  PubMed  Google Scholar 

  • Pearcy M, Aron S, Doums C, Keller L (2004) Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306:1780–1783. doi:10.1126/science.1105453

    Article  PubMed  CAS  Google Scholar 

  • Robinson GE, Page RE (1988) Genetic determination of gurding and undertaking in honeybee colonies. Nature 333:356–358

    Article  Google Scholar 

  • Roisin Y, Pasteels JM (1986) Reproductive mechanisms in termites: polycalism and polygyny in Nasutitermes polygynus and N. costalis. Insectes Soc 33:149–167

    Article  Google Scholar 

  • Smith CR, Anderson KE, Tillberg CV, Gadau J, Suarez AV (2008) Caste determination in a polymorphic social insect: nutritional, social, and genetic factors. Am Nat 172:497–507. doi:10.1086/590961

    Article  PubMed  CAS  Google Scholar 

  • Thorne BL (1984) Polygyny in the neotropical termite Nasutitermes corniger: life history consequences of queen mutualism. Behav Ecol Sociobiol 14:117–136

    Article  Google Scholar 

  • Thorne BL, Traniello JFA, Adams ES, Bulmer M (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169

    Article  Google Scholar 

  • Vargo EL (2000) Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol Ecol 9:817–820

    Article  PubMed  CAS  Google Scholar 

  • Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403. doi:10.1146/annurev.ento.54.110807.090443

    Article  PubMed  CAS  Google Scholar 

  • Vargo EL, Labadie PE, Matsuura K (2011) Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc R Soc Lond B. doi:10.1098/rspb.2011.1030

  • Volny VP, Gordon DM (2002) Genetic basis for queen-worker dimorphism in a social insect. Proc Natl Acad Sci USA 99:6108–6111. doi:10.1073/pnas.092066699

    Article  PubMed  CAS  Google Scholar 

  • Weil T, Korb J, Rehli M (2009) Comparison of queen-specific gene expression in related lower termite species. Mol Biol Evol 26:1841–1850. doi:10.1093/molbev/msp095

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128:13–34

    Article  Google Scholar 

  • Zhou X, Oi FM, Scharf ME (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci USA 103:4499–4504. doi:10.1073/pnas.0508866103

    Article  PubMed  CAS  Google Scholar 

  • Zimet M, Stuart AM (1982) Sexual dimorphism in the immature stages of the termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 7:1–7

    Google Scholar 

Download references

Acknowledgements

We thank H. Nakano and T. Yashiro for research assistance; and E.L. Vargo, C. Himuro, K. Shimizu, and T. Yokoi for helpful advice. This work was supported by the Japan Society for the Promotion of Science (no.09001407) to K.M. and the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry to K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuuka Yamamoto.

Additional information

Communicated by J. Traniello

Appendix

Appendix

Table 2 The numbers and average abdomen volumes of homozygous or heterozygous female neotenics at each of the five microsatellite loci in laboratory colonies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y., Matsuura, K. Genetic influence on caste determination underlying the asexual queen succession system in a termite. Behav Ecol Sociobiol 66, 39–46 (2012). https://doi.org/10.1007/s00265-011-1249-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-011-1249-4

Keywords

Navigation