Skip to main content
Log in

Worker reproductive parasitism and drift in the western honeybee Apis mellifera

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

When a honeybee (Apis spp.) colony loses its queen and is unable to rear a new one, some of the workers activate their ovaries and produce eggs. When a colony has a queen (i.e., it is queenright) almost all worker-laid eggs are eaten, but when hopelessly queenless, the workers become more tolerant of worker-laid eggs and rear some of them to adult drones. This increased tolerance renders a queenless colony vulnerable to worker reproductive parasitism, wherein unrelated workers enter the colony and lay eggs. Here, we show that the proportion of unrelated (non-natal) workers significantly decreases after an Apis mellifera colony becomes queenless. The remaining non-natal workers are as likely to have activated ovaries as natal workers, yet they produce more eggs than natal workers, resulting in significantly higher reproductive success for non-natal workers. In a second experiment, we provided queenless and queenright workers with a choice to remain in their own colony or to join a queenless or queenright colony nearby. The experiment was set up such that worker movement was unlikely to be due to simple orientation errors. Very few workers joined another colony, and there was no preference for workers to drift into or out of queenless or queenright colonies, in accordance with the proportion of non-natal workers declining significantly after becoming queenless in the first experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbot P, Withgott JH, Moran NA (2001) Genetic conflict and conditional altruism in social aphid colonies. Proc Nat Acad Sci USA 98:12068–12071

    Article  CAS  PubMed  Google Scholar 

  • Allsopp MH (1993) Summarized overview of the capensis problem. S Afr Bee J 65:127–136

    Google Scholar 

  • Anderson RH (1963) The laying worker in the Cape honeybee Apis mellifera capensis. J Apicult Res 2:85–92

    Google Scholar 

  • Baum KA, Rubink WL, Pinto MA, Coulson RN (2005) Spatial and temporal distribution and nest site characteristics of feral honey bee (Hymenoptera: Apidae) colonies in a coastal prairie landscape. Environ Entomol 34:610–618

    Article  Google Scholar 

  • Baum KA, Tchakerian MD, Thoenes SC, Coulson RN (2008) Africanized honey bees in urban environments: a spatio-temporal analysis. Landscape Urban Plann 8:123–132

    Article  Google Scholar 

  • Beekman M, Oldroyd BP (2005) Honeybee workers use cues other than egg viability for policing. Biol Letters 1:129–132

    Article  Google Scholar 

  • Beekman M, Oldroyd BP (2008) When workers disunite: intraspecific parasitism in eusocial bees. Annu Rev Entomol 53:19–37

    Article  CAS  PubMed  Google Scholar 

  • Beekman M, Allsopp MH, Wossler TC, Oldroyd BP (2008) Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa. Heredity 100:13–18

    Article  CAS  PubMed  Google Scholar 

  • Beekman M, Allsopp MH, Jordan LA, Lim J, Oldroyd BP (2009) A quantitative study of worker reproduction in queenright colonies of the Cape honey bee, Apis mellifera capensis. Mol Ecol 18:2722–2727

    Article  PubMed  Google Scholar 

  • Birmingham AL, Hoover SER, Winston ML, Ydenberg RC (2004) Drifting bumble bee (Hymenoptera: Apidae) workers in commercial greenhouses may be social parasites. Can J Zool 82:1843–1853

    Article  Google Scholar 

  • Breed MD, Leger EA, Pearce AN, Wang YJ (1998) Comb wax effects on the ontogeny of honey bee nestmate recognition. Animal Behaviour 55:13–20

    Article  PubMed  Google Scholar 

  • Breed MD, Perry S, Bjostad LB (2004) Testing the blank slate hypothesis: why honey bee colonies accept young bees. Insectes Sociaux 51:12–16

    Article  Google Scholar 

  • Brockmann HJ (1993) Parasitizing conspecifics: comparisons between hymenoptera and birds. Trends Ecol Evol 8:2–4

    Article  Google Scholar 

  • Châline N, Martin SJ, Ratnieks FLW (2004) Worker policing persists in a hopelessly queenless honey bee colony (Apis mellifera). Insect Soc 51:113–116

    Article  Google Scholar 

  • Chapman NC, Nanork P, Reddy MS, Bhat NS, Beekman M, Oldroyd BP (2008) Nestmate recognition by guards of the Asian hive bee Apis cerana. Insect Soc 55:382–386

    Article  Google Scholar 

  • Chapman NC, Makinson J, Beekman M, Oldroyd BP (2009a) Honeybee (Apis mellifera) guards use adaptive acceptance thresholds to limit worker reproductive parasitism. Anim Behav doi:10.1016/j.anbehav.2009.08.007

  • Chapman NC, Nanork P, Gloag R, Wattanachaiyingcharoen W, Beekman M, Oldroyd BP (2009b) Queenless colonies of the Asian red dwarf honey bee (Apis florea) are infiltrated by workers from other queenless colonies. Behav Ecol 20:817–820

    Article  Google Scholar 

  • Delaplane KS, Harbo JR (1987) Effect of queenlessness on worker survival, honey gain and defence behavior in honeybees. J Api Res 26:37–42

    Google Scholar 

  • Downs SG, Ratnieks FLW (1999) Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage. Animal Behaviour 58:643–648

    Article  PubMed  Google Scholar 

  • Eberhard WG (1986) Possible mutualism between females of the subsocial membracid Polyglypta dispar (Homoptera). Behav Ecol Sociobiol 19:447–453

    Article  Google Scholar 

  • Eickwort GC (1975) Gregarious nesting of the mason bee Hoplitis anthocopoides and the evolution of parasitism and sociality among megachilid bees. Evol 29:142–150

    Article  Google Scholar 

  • Fabre JH (1914) The Mason-bees. Hodder and Stoughton, London

    Google Scholar 

  • Field J (1989) Intraspecific parasitism and nesting success in the solitary wasp Ammophila sabulosa. Behav 110:23–46

    Article  Google Scholar 

  • Field J (1992) Intraspecific parasitism as an alternative reproductive tactic in nest-building wasps and bees. Biol Rev 67:79–126

    Google Scholar 

  • Foster KR, Seppa P, Ratnieks FLW, Thoren PA (1999) Low paternity in the hornet Vespa crabro indicates that multiple mating by queens is derived in vespine wasps. Behav Ecol Sociobiol 46:252–257

    Article  Google Scholar 

  • Foster KR, Wenseleers T, Ratnieks FLW (2006) Kin selection is the key to altruism. Trends Ecol Evol 21:57–60

    Article  PubMed  Google Scholar 

  • Free JB (1958) The drifting of honey-bees. J Agric Sci 51:294–306

    Article  Google Scholar 

  • Free JB, Spencer-Booth Y (1961) Further experiments on drifting of honey-bees. J Agric Sci 57:153–158

    Article  Google Scholar 

  • Gamboa GJ (1978) Intraspecific defense: advantage of social cooperation among paper wasp foundresses. Science 199:1463–1465

    Article  PubMed  Google Scholar 

  • Halling LA, Oldroyd BP, Wattanachaiyingcharoen W, Barron AB, Nanork P, Wongsiri S (2001) Worker policing in the bee Apis florea. Behav Ecol Sociobiol 49:509–513

    Article  Google Scholar 

  • Hansell M (1987) Elements of eusociality in colonies of Eustenogaster calyptodoma (Sakagami & Yoshikawa) (Stenogastrinae, Vespidae). Anim Behav 35:131–141

    Article  Google Scholar 

  • Heinze J, Keller L (2000) Alternative reproductive strategies: a queen perspective in ants. Trends Ecol Evol 15:508–512

    Article  PubMed  Google Scholar 

  • Jay SC (1965) Drifting of honeybees in commercial apiaries I: effect of various environmental factors. J Apicult Res 4:167–175

    Google Scholar 

  • Jay SC (1966a) Drifting of honeybees in commercial apiaries II: effects of various factors when hives are arranged in rows. J Apicult Res 5:103–112

    Google Scholar 

  • Jay SC (1966b) Drifting of honeybees in commercial apiaries III: effect of apiary layout. J Apicult Res 5:137–148

    Google Scholar 

  • Jay SC (1968) Drifting of honeybees in commercial apiaries IV: further studies of the effect of apiary layout. J Apicult Res 7:37–44

    Google Scholar 

  • Jensen AB, Palmer KA, Chaline N, Raine NE, Tofilski A, Martin SJ, Pedersen BV, Boomsma JJ, Ratnieks FLW (2005) Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis. Conserv Genet 6:527–537

    Article  CAS  Google Scholar 

  • Jordan LA, Allsopp MH, Oldroyd BP, Wossler TC, Beekman M (2008) Cheating honey bee workers produce royal offspring. Proc R Soc Lond B 275:345–351

    Article  Google Scholar 

  • Klahn J (1988) Intraspecific comb usurpation in the social wasp Polistes fuscatus. Behav Ecol Sociobiol 23:1–8

    Article  Google Scholar 

  • Kukuk PF, May B (1991) Colony dynamics in a primitively eusocial halictine bee Lasioglossum (Dialictus) zephyrum (Hymenoptera: Halictidae). Insect Soc 38:171–189

    Article  Google Scholar 

  • Lopez-Vaamonde C, Koning JW, Brown RM, Jordan WC, Bourke AFG (2004) Social parasitism by male-producing reproductive workers in a eusocial insect. Nature 430:557–560

    Article  CAS  PubMed  Google Scholar 

  • Lundie AE (1954) Laying worker bees produce worker bees. S Afr Bee J 29:10–11

    Google Scholar 

  • Martin CG, Oldroyd BP, Beekman M (2004) Differential reproductive success among subfamilies in queenless honeybee (Apis mellifera L.) colonies. Behav Ecol Sociobiol 56:42–49

    Article  Google Scholar 

  • Martin S, Chaline N, Drijfhout F, Jones G (2005a) Role of esters in egg removal behaviour in honeybee (Apis mellifera) colonies. Behav Ecol Sociobiol 59:24–29

    Article  Google Scholar 

  • Martin SJ, Châline N, Ratnieks FLW, Jones GR (2005b) Searching for the egg-marking signal in honeybees. J Negative Results Ecol Evolut Biol 2:1–9

    Google Scholar 

  • Miller DG, Ratnieks FLW (2001) The timing of worker reproduction and breakdown of policing behaviour in queenless honey bee (Apis mellifera L.) societies. Insect Soc 48:178–184

    Article  Google Scholar 

  • Montague CE, Oldroyd BP (1998) The evolution of worker sterility in honey bees: an investigation into a behavioral mutant causing a failure of worker policing. Evolution 52:1408–1415

    Article  Google Scholar 

  • Moritz RFA, Kryger P, Koeniger G, Koeniger N, Estoup A, Tingek S (1995) High degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability. Behav Ecol Sociobiol 37:357–363

    Article  Google Scholar 

  • Muller JK, Eggert A-K, Dressel J (1990) Intraspecific brood parasitism in the burying beetle, Anecrophorus vespilloides (Coleoptera: Silphidae). Anim Behav 40:491–499

    Article  Google Scholar 

  • Nanork P, Paar J, Chapman NC, Wongsiri S, Oldroyd BP (2005) Asian honeybees parasitize the future dead. Nature 437:829

    Article  CAS  PubMed  Google Scholar 

  • Nanork P, Wongsiri S, Oldroyd BP (2006) The reproductive dilemmas of queenless red dwarf honeybee (Apis florea) workers. Behav Ecol Sociobiol 61:91–97

    Article  Google Scholar 

  • Nanork P, Chapman NC, Wongsiri S, Lim J, Gloag R, Oldroyd BP (2007) Social parasitism by workers in queenless and queenright Apis cerana colonies. Mol Ecol 16:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Hepburn R (2002) Behavioural basis for social parasitism of Cape honeybees (Apis mellifera capensis). Apidologie 33:165–192

    Article  Google Scholar 

  • Neumann P, Moritz RFA (2002) The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav Ecol Sociobiol 52:271–281

    Article  Google Scholar 

  • Neumann P, Moritz RFA, Mautz D (1999) Using DNA microsatellites for maternity testing in honeybees (Apis mellifera L.). Apidologie 30:505–512

    Article  CAS  Google Scholar 

  • Neumann P, Moritz RFA, Mautz D (2000) Colony evaluation is not affected by drifting of drone and worker honeybees (Apis mellifera L.) at a performance testing apiary. Apidologie 31:67–79

    Article  Google Scholar 

  • Neumann P, Radloff SE, Moritz RFA, Hepburn R, Reece SL (2001) Social parasitism by honeybee workers (Apis mellifera capensis Escholtz): host finding and resistance of hybrid host colonies. Behav Ecol 12:419–428

    Article  Google Scholar 

  • Oldroyd BP, Osborne KE (1999) The evolution of worker sterility in honeybees: the genetic basis of failure of worker policing. Proc R Soc Lond B 266:1335–1339

    Article  Google Scholar 

  • Oldroyd BP, Wongsiri S (2006) Asian honey bees: biology, conservation and human interactions. Harvard University Press, Cambridge

    Google Scholar 

  • Oldroyd BP, Smolenski AJ, Cornuet J-M, Crozier RH (1994) Anarchy in the beehive. Nature 371:749

    Article  CAS  Google Scholar 

  • Oldroyd BP, Smolenski A, Lawler S, Estoup A, Crozier R (1995) Colony aggregations in Apis mellifera. Apidologie 26:119–130

    Article  Google Scholar 

  • Oldroyd BP, Clifton MJ, Wongsiri S, Rinderer TE, Sylvester HA, Crozier RH (1997a) Polyandry in the genus Apis, particularly Apis andreniformis. Behav Ecol Sociobiol 40:17–26

    Article  Google Scholar 

  • Oldroyd BP, Thexton EG, Lawler SH, Crozier RH (1997b) Population demography of Australian feral bees (Apis mellifera). Oecologia 111:381–387

    Article  Google Scholar 

  • Oldroyd BP, Osborne KE, Mardan M (2000) Colony relatedness in aggregations of Apis dorsata Fabricius (Hymenoptera, Apidae). Insect Soc 47:94–95

    Article  Google Scholar 

  • Oldroyd BP, Halling LA, Good G, Wattanachaiyingcharoen W, Barron AB, Nanork P, Wongsiri S, Ratnieks FLW (2001) Worker policing and worker reproduction in Apis cerana. Behav Ecol Sociobiol 50:371–377

    Article  Google Scholar 

  • Onions GW (1912) South African ‘fertile-worker bees’. S Afr Agri J 1:720–728

    Google Scholar 

  • Paar J, Oldroyd BP, Huettinger E, Kastberger G (2002) Drifting of workers in nest aggregations of the giant honeybee Apis dorsata. Apidologie 33:553–561

    Article  Google Scholar 

  • Page RE, Erickson EH (1988) Reproduction by worker honey bees (Apis mellifera L.). Behav Ecol Sociobiol 23:117–126

    Article  Google Scholar 

  • Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31:235–248

    Article  Google Scholar 

  • Perez-Sato JA, Hughes WOH, Couvillon MJ, Ratnieks FLW (2008) Effects of hive spacing, entrance orientation, and worker activity on nest relocation by honey bee queens. Apidologie 39:708–713

    Article  Google Scholar 

  • Pfeiffer KJ, Crailsheim K (1998) Drifting of honeybees. Insect Soc 45:151–167

    Article  Google Scholar 

  • Ratnieks FLW (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 132:217–236

    Article  Google Scholar 

  • Ratnieks FLW (1993) Egg-laying, egg-removal, and ovary development by workers in queenright honey bee colonies. Behav Ecol Sociobiol 32:191–198

    Article  Google Scholar 

  • Ratnieks FLW (1995) Evidence for queen-produced egg-marking pheromone and its use in worker policing in the honey bee. J Apicult Res 34:31–37

    Google Scholar 

  • Ratnieks FLW, Visscher PK (1989) Worker policing in honey-bees. Nature 342:796–797

    Article  Google Scholar 

  • Ratnieks FLW, Foster KR, Wenseleers T (2006) Conflict resolution in insect societies. Annu Rev Entomol 51:581–608

    Article  CAS  PubMed  Google Scholar 

  • Rauschmayer F (1928) Das Verfliegen der Bienen und die optische Orientierung am Bienenstand. Arch Bienenk 9:249–322

    Google Scholar 

  • Rinderer TE, Oldroyd BP, de Guzman LI, Wattanachaiyingcharoen W, Wongsiri S (2002) Spatial distribution of the dwarf honey bees in an agroecosystem in southeastern Thailand. Apidologie 33:539–543

    Article  Google Scholar 

  • Robinson GE, Page RE, Fondrk MK (1990) Intracolonial behavioral variation in worker oviposition, oophagy, and larval care in queenless honey bee colonies. Behav Ecol Sociobiol 26:315–323

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman, New York

    Google Scholar 

  • Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A, Garnery L, Haberl M, Cornuet JM (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol Ecol Notes 3:307–311

    Article  CAS  Google Scholar 

  • Soro A, Ayasse M, Zobel MU, Paxton RJ (2009) Complex sociogenetic organization and the origin of unrelated workers in a eusocial sweat bee, Lasioglossum malachurum. Insect Soc 56:55–63

    Article  Google Scholar 

  • Tallamy DW (2005) Egg dumping in insects. Annu Rev Entomol 50:347–370

    Article  CAS  PubMed  Google Scholar 

  • Tallamy DW, Denno RF (1982) Life history trade-offs in Gargaphia solani (Hemiptera: Tingidae): the cost of reproduction. Ecology 63:616–620

    Article  Google Scholar 

  • Underwood BA (1990) Seasonal nesting cycle and migration patterns of the Himalayan honey bee Apis laboriosa. Natl Geogr Res 6:276–290

    Google Scholar 

  • Visscher PK (1989) A quantitative study of worker reproduction in honey bee colonies. Behav Ecol Sociobiol 25:247–254

    Article  Google Scholar 

  • Visscher PK (1996) Reproductive conflict in honey bees: a stalemate of worker egg-laying and policing. Behav Ecol Sociobiol 39:237–244

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex (R)100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:507

    Google Scholar 

  • Wattanachaiyingcharoen W, Oldroyd BP, Good G, Halling L, Ratnieks FLW, Wongsiri S (2002) Lack of worker reproduction in the giant honey bee Apis dorsata Fabricius. Insect Soc 49:80–85

    Article  Google Scholar 

  • Wattanachaiyingcharoen W, Wongsiri S, Oldroyd BP (2008) Aggregations of unrelated Apis florea colonies. Apidologie 39:531–536

    Article  Google Scholar 

  • Wenseleers T, Hart A, Ratnieks FLW (2004a) When resistance is useless: policing and the evolution of reproductive acquiescence in insect societies. Am Nat 164:E154–E167

    Article  Google Scholar 

  • Wenseleers T, Helantera H, Hart A, Ratnieks FLW (2004b) Worker reproduction and policing in insect societies: an ESS analysis. J Evol Biol 17:1035–1047

    Article  CAS  PubMed  Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  • Yom-Tov Y (1980) Intraspecific nest parasitism in birds. Biol Rev 55:93–108

    Article  Google Scholar 

  • Yom-Tov Y (2001) An updated list and some comments on the occurrence of intraspecific nest parasitism in birds. Ibis 143:133–143

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank our beekeeper Michael Duncan, our lab managers Julie Lim and Marcus McHale for their assistance, and Gretchen Wheen for allowing us to conduct experiments on her property. We also thank Jerome Buhl, James Makinson, Nathan Lo, Ros Gloag, and Peter Oxley for helping to mark the bees. We thank the members of the Genetics and Behaviour of Social Insects Laboratory, University of Sydney, Andrew Bourke, and two anonymous reviewers for their helpful comments on the manuscript. These experiments were performed according to the laws of Australia. The study was funded by an Australian Research Council grant to M. Beekman and B.P. Oldroyd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine C. Chapman.

Additional information

Communicated by O. Rueppell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, N.C., Beekman, M. & Oldroyd, B.P. Worker reproductive parasitism and drift in the western honeybee Apis mellifera . Behav Ecol Sociobiol 64, 419–427 (2010). https://doi.org/10.1007/s00265-009-0858-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-009-0858-7

Keywords

Navigation