Skip to main content

Advertisement

Log in

Orthobiologics: a review

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The use of biologic materials in orthopaedics (orthobiologics) has gained significant attention over the past years. To enhance the body of the related literature, this review article is aimed at summarizing these novel biologic therapies in orthopaedics and at discussing their multiple clinical implementations and outcomes.

Methods

This review of the literature presents the methods, clinical applications, impact, cost-effectiveness, and outcomes, as well as the current indications and future perspectives of orthobiologics, namely, platelet-rich plasma, mesenchymal stem cells, bone marrow aspirate concentrate, growth factors, and tissue engineering.

Results

Currently available studies have used variable methods of research including biologic materials as well as patient populations and outcome measurements, therefore making comparison of studies difficult. Key features for the study and use of orthobiologics include minimal invasiveness, great healing potential, and reasonable cost as a nonoperative treatment option. Their clinical applications have been described for common orthopaedic pathologies such as osteoarthritis, articular cartilage defects, bone defects and fracture nonunions, ligament injuries, and tendinopathies.

Conclusions

Orthobiologics-based therapies have shown noticeable clinical results at the short- and mid-term. It is crucial that these therapies remain effective and stable in the long term. The optimal design for a successful scaffold remains to be further determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data (review of the literature) are available in a data repository.

Code availability

Not applicable.

References

  1. Hussain ZB, Chahla J, LaPrade RF, Mandelbaum BR (2018) Orthobiologics: today and tomorrow. In: Farr J, Gomoll AH (eds) Cartilage Restoration. Springer International Publishing, Cham, pp 131–142

    Chapter  Google Scholar 

  2. LaPrade RF, Geeslin AG, Murray IR, Musahl V, Zlotnicki JP, Petrigliano F, Mann BJ (2016) Biologic treatments for sports injuries II think tank—current concepts, future research, and barriers to advancement, part 1: biologics overview, ligament injury, tendinopathy. Am J Sports Med 44:3270–3283. https://doi.org/10.1177/0363546516634674

    Article  PubMed  Google Scholar 

  3. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA (2009) Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med 37:2259–2272. https://doi.org/10.1177/0363546509349921

    Article  PubMed  Google Scholar 

  4. Lamplot JD, Rodeo SA, Brophy RH (2020) A practical guide for the current use of biologic therapies in sports medicine. Am J Sports Med 48:488–503. https://doi.org/10.1177/0363546519836090

    Article  PubMed  Google Scholar 

  5. Peterson LJ (1998) Oral and maxillofacial surgery. Oral Surg Oral Med Oral Pathol 85:9

    Google Scholar 

  6. Fang J, Wang X, Jiang W, Zhu Y, Hu Y, Zhao Y, Song X, Zhao J, Zhang W, Peng J, Wang Y (2020) Platelet-rich plasma therapy in the treatment of diseases associated with orthopedic injuries. Tissue Eng Part B Rev. https://doi.org/10.1089/ten.teb.2019.0292

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ren B, Lv X, Tu C, Li Z (2021) Research trends of platelet-rich plasma application in orthopaedics from 2002 to 2020: a bibliometric analysis. Int Orthop 45:2773–2790. https://doi.org/10.1007/s00264-021-05163-6

    Article  PubMed  Google Scholar 

  8. Sánchez M, Anitua E, Orive G, Mujika I, Andia I (2009) Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sports Med 39:345–354. https://doi.org/10.2165/00007256-200939050-00002

    Article  PubMed  Google Scholar 

  9. Malahias MA, Chytas D, Mavrogenis AF, Nikolaou VS, Johnson EO, Babis GC (2019) Platelet-rich plasma injections for carpal tunnel syndrome: a systematic and comprehensive review. Eur J Orthop Surg Traumatol 29(1):1–8. https://doi.org/10.1007/s00590-018-2278-8

  10. Le ADK, Enweze L, DeBaun MR, Dragoo JL (2018) Current clinical recommendations for use of platelet-rich plasma. Curr Rev Musculoskelet Med 11:624–634. https://doi.org/10.1007/s12178-018-9527-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mazzocca AD, McCarthy MBR, Chowaniec DM, Cote MP, Romeo AA, Bradley JP, Arciero RA, Beitzel K (2012) Platelet-rich plasma differs according to preparation method and human variability. J Bone Jt Surg 94:308–316. https://doi.org/10.2106/JBJS.K.00430

    Article  Google Scholar 

  12. Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M (2006) The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res 17:212–219. https://doi.org/10.1111/j.1600-0501.2005.01203.x

    Article  PubMed  Google Scholar 

  13. Yoshida R, Cheng M, Murray MM (2014) Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture: increasing platelet concentration inhibits fibroblasts. J Orthop Res 32:291–295. https://doi.org/10.1002/jor.22493

    Article  CAS  PubMed  Google Scholar 

  14. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol 27:158–167. https://doi.org/10.1016/j.tibtech.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  15. Harrison P, the Subcommittee on Platelet Physiology (2018) The use of platelets in regenerative medicine and proposal for a new classification system: guidance from the SSC of the ISTH. J Thromb Haemost 16:1895–1900. https://doi.org/10.1111/jth.14223

    Article  CAS  PubMed  Google Scholar 

  16. Sharun K, Pawde AM (2021) Universal classification system for platelet-rich plasma (PRP): a method to define the variables in PRP production. Burns 47(2):488–489. https://doi.org/10.1016/j.burns.2020.07.015

  17. Sharun K, Pawde AM (2020) Platelet-rich plasma for hip osteoarthritis: comparing the variables in production protocol and composition. Clin Rheumatol 39:3899–3901. https://doi.org/10.1007/s10067-020-05337-4

    Article  PubMed  Google Scholar 

  18. Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104. https://doi.org/10.1182/blood-2003-08-2804

    Article  CAS  PubMed  Google Scholar 

  19. Mumford AD, Frelinger AL III, Gachet C, Gresele P, Noris P, Harrison P, Mezzano D (2015) A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb Haemost 114:14–25. https://doi.org/10.1160/TH14-11-0999

    Article  PubMed  Google Scholar 

  20. Angeline ME, Rodeo SA (2012) Biologics in the management of rotator cuff surgery. Clin Sports Med 31:645–663. https://doi.org/10.1016/j.csm.2012.07.003

    Article  PubMed  Google Scholar 

  21. Anitua E, Andia I, Ardanza B, Nurden P, Nurden A (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91:4–15. https://doi.org/10.1160/TH03-07-0440

    Article  PubMed  Google Scholar 

  22. Riboh JC, Saltzman BM, Yanke AB, Fortier L, Cole BJ (2016) Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med 44:792–800. https://doi.org/10.1177/0363546515580787

    Article  PubMed  Google Scholar 

  23. Belk JW, Kraeutler MJ, Houck DA, Goodrich JA, Dragoo JL, McCarty EC (2021) Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med 49:249–260. https://doi.org/10.1177/0363546520909397

    Article  PubMed  Google Scholar 

  24. Sundman EA, Cole BJ, Fortier LA (2011) Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med 39:2135–2140. https://doi.org/10.1177/0363546511417792

    Article  PubMed  Google Scholar 

  25. Murray IR, LaPrade RF, Musahl V, Geeslin AG, Zlotnicki JP, Mann BJ, Petrigliano FA (2016) Biologic treatments for sports injuries II think tank—current concepts, future research, and barriers to advancement, part 2: rotator cuff. Orthop J Sports Med 4:232596711663658. https://doi.org/10.1177/2325967116636586

    Article  Google Scholar 

  26. Meheux CJ, McCulloch PC, Lintner DM, Varner KE, Harris JD (2016) Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: a systematic review. Arthrosc J Arthrosc Relat Surg 32:495–505. https://doi.org/10.1016/j.arthro.2015.08.005

    Article  Google Scholar 

  27. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health Multidiscip Approach 1:461–468. https://doi.org/10.1177/1941738109350438

    Article  Google Scholar 

  28. Zlotnicki JP, Geeslin AG, Murray IR, Petrigliano FA, LaPrade RF, Mann BJ, Musahl V (2016) Biologic treatments for sports injuries II think tank—current concepts, future research, and barriers to advancement, part 3: articular cartilage. Orthop J Sports Med 4:232596711664243. https://doi.org/10.1177/2325967116642433

    Article  Google Scholar 

  29. Xie X, Zhang C, Tuan RS (2014) Biology of platelet-rich plasma and its clinical application in cartilage repair. Arthritis Res Ther 16:204. https://doi.org/10.1186/ar4493

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA (2010) Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF. J Cell Physiol 225:757–766. https://doi.org/10.1002/jcp.22274

    Article  CAS  PubMed  Google Scholar 

  31. Kabiri A, Hashemibeni B, Pourazar A, Mardani M, Esfandiari E, Esmaeili A (2014) Platelet-rich plasma application in chondrogenesis. Adv Biomed Res 3:138. https://doi.org/10.4103/2277-9175.135156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tischer T, Bode G, Buhs M, Marquass B, Nehrer S, Vogt S, Zinser W, Angele P, Spahn G, Welsch GH, Niemeyer P, Madry H (2020) Platelet-rich plasma (PRP) as therapy for cartilage, tendon and muscle damage – German working group position statement. J Exp Orthop 7:64. https://doi.org/10.1186/s40634-020-00282-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen L, Yuan T, Chen S, Xie X, Zhang C (2017) The temporal effect of platelet-rich plasma on pain and physical function in the treatment of knee osteoarthritis: systematic review and meta-analysis of randomized controlled trials. J Orthop Surg 12:16. https://doi.org/10.1186/s13018-017-0521-3

    Article  Google Scholar 

  34. Dong Y, Zhang B, Yang Q, Zhu J, Sun X (2021) The effects of platelet-rich plasma injection in knee and hip osteoarthritis: a meta-analysis of randomized controlled trials. Clin Rheumatol 40:263–277. https://doi.org/10.1007/s10067-020-05185-2

    Article  PubMed  Google Scholar 

  35. Medina-Porqueres I, Ortega-Castillo M, Muriel-Garcia A (2020) Effectiveness of platelet-rich plasma in the management of hip osteoarthritis: a systematic review and meta-analysis. Clin Rheumatol. https://doi.org/10.1007/s10067-020-05241-x

    Article  PubMed  Google Scholar 

  36. Dallari D, Stagni C, Rani N, Sabbioni G, Pelotti P, Torricelli P, Tschon M, Giavaresi G (2016) Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med 44:664–671. https://doi.org/10.1177/0363546515620383

    Article  PubMed  Google Scholar 

  37. Battaglia M, Guaraldi F, Vannini F, Rossi G, Timoncini A, Buda R, Giannini S (2013) Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics 36(12):e1501–8

  38. Kannus P (2000) Structure of the tendon connective tissue: tendon connective tissue structure. Scand J Med Sci Sports 10:312–320. https://doi.org/10.1034/j.1600-0838.2000.010006312.x

    Article  CAS  PubMed  Google Scholar 

  39. Sharma P, Maffulli N (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 87(1):187–202. https://doi.org/10.2106/JBJS.D.01850

  40. Oshiro W, Lou J, Xing X, Tu Y, Manske PR (2003) Flexor tendon healing in the rat: a histologic and gene expression study. J Hand Surg 28:814–823. https://doi.org/10.1016/S0363-5023(03)00366-6

    Article  Google Scholar 

  41. Marui T, Niyibizi C, Georgescu HI, Cao M, Kavalkovich KW, Levine RE, Woo SL-Y (1997) Effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res 15:18–23. https://doi.org/10.1002/jor.1100150104

    Article  CAS  PubMed  Google Scholar 

  42. Joseph MF, Denegar CR (2015) Treating tendinopathy. Clin Sports Med 34:363–374. https://doi.org/10.1016/j.csm.2014.12.006

    Article  PubMed  Google Scholar 

  43. Miller LE, Parrish WR, Roides B, Bhattacharyya S (2017) Efficacy of platelet-rich plasma injections for symptomatic tendinopathy: systematic review and meta-analysis of randomised injection-controlled trials. BMJ Open Sport Exerc Med 3:e000237. https://doi.org/10.1136/bmjsem-2017-000237

    Article  PubMed  PubMed Central  Google Scholar 

  44. Middleton KK, Barro V, Muller B, Terada S, Fu FH (2012) Evaluation of the effects of platelet-rich plasma (PRP) therapy involved in the healing of sports-related soft tissue injuries. Iowa Orthop J 32:150–163

  45. Tallon C, Maffulli N, Ewen SWB (2001) Ruptured Achilles tendons are significantly more degenerated than tendinopathic tendons. Med Sci Sports Exerc 33:1983–1990. https://doi.org/10.1097/00005768-200112000-00002

    Article  CAS  PubMed  Google Scholar 

  46. Mishra AK, Skrepnik NV, Edwards SG, Jones GL, Sampson S, Vermillion DA, Ramsey ML, Karli DC, Rettig AC (2014) Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med 42:463–471. https://doi.org/10.1177/0363546513494359

    Article  PubMed  Google Scholar 

  47. Krogh TP, Bartels EM, Ellingsen T, Stengaard-Pedersen K, Buchbinder R, Fredberg U, Bliddal H, Christensen R (2013) Comparative effectiveness of injection therapies in lateral epicondylitis: a systematic review and network meta-analysis of randomized controlled trials. Am J Sports Med 41:1435–1446. https://doi.org/10.1177/0363546512458237

    Article  PubMed  Google Scholar 

  48. Gosens T, Peerbooms JC, van Laar W, den Oudsten BL (2011) Ongoing positive effect of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med 39:1200–1208. https://doi.org/10.1177/0363546510397173

    Article  PubMed  Google Scholar 

  49. de Jonge S, de Vos RJ, Weir A, van Schie HTM, Bierma-Zeinstra SMA, Verhaar JAN, Weinans H, Tol JL (2011) One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med 39:1623–1630. https://doi.org/10.1177/0363546511404877

    Article  PubMed  Google Scholar 

  50. de Vos RJ, Weir A, van Schie HTM, Bierma-Zeinstra SMA, Verhaar JAN, Weinans H, Tol JL (2010) Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA 303:144. https://doi.org/10.1001/jama.2009.1986

    Article  PubMed  Google Scholar 

  51. Boesen AP, Hansen R, Boesen MI, Malliaras P, Langberg H (2017) Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion Achilles tendinopathy: a randomized double-blinded prospective study. Am J Sports Med 45:2034–2043. https://doi.org/10.1177/0363546517702862

    Article  PubMed  Google Scholar 

  52. Dragoo JL, Wasterlain AS, Braun HJ, Nead KT (2014) Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am J Sports Med 42:610–618. https://doi.org/10.1177/0363546513518416

    Article  PubMed  Google Scholar 

  53. Filardo G, Kon E, Della Villa S, Vincentelli F, Fornasari PM, Marcacci M (2010) Use of platelet-rich plasma for the treatment of refractory jumper’s knee. Int Orthop 34:909–915. https://doi.org/10.1007/s00264-009-0845-7

    Article  PubMed  Google Scholar 

  54. Lian ØB, Engebretsen L, Bahr R (2005) Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med 33:561–567. https://doi.org/10.1177/0363546504270454

    Article  PubMed  Google Scholar 

  55. Figueroa D, Figueroa F, Calvo R, Vaisman A, Ahumada X, Arellano S (2015) Platelet-rich plasma use in anterior cruciate ligament surgery: systematic review of the literature. Arthrosc J Arthrosc Relat Surg 31:981–988. https://doi.org/10.1016/j.arthro.2014.11.022

    Article  Google Scholar 

  56. Vavken P, Sadoghi P, Murray MM (2011) The effect of platelet concentrates on graft maturation and graft-bone interface healing in anterior cruciate ligament reconstruction in human patients: a systematic review of controlled trials. Arthrosc J Arthrosc Relat Surg 27:1573–1583. https://doi.org/10.1016/j.arthro.2011.06.003

    Article  Google Scholar 

  57. Fleming BC, Proffen BL, Vavken P, Shalvoy MR, Machan JT, Murray MM (2015) Increased platelet concentration does not improve functional graft healing in bio-enhanced ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 23:1161–1170. https://doi.org/10.1007/s00167-014-2932-6

    Article  PubMed  Google Scholar 

  58. Jo CH, Kim JE, Yoon KS, Shin S (2012) Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am J Sports Med 40:1035–1045. https://doi.org/10.1177/0363546512437525

    Article  PubMed  Google Scholar 

  59. Li X, Xu C-P, Hou Y-L, Song J-Q, Cui Z, Yu B (2014) Are platelet concentrates an ideal biomaterial for arthroscopic rotator cuff repair? A meta-analysis of randomized controlled trials. Arthrosc J Arthrosc Relat Surg 30:1483–1490. https://doi.org/10.1016/j.arthro.2014.03.020

    Article  Google Scholar 

  60. Zhao J-G, Zhao L, Jiang Y-X, Wang Z-L, Wang J, Zhang P (2015) Platelet-rich plasma in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Arthrosc J Arthrosc Relat Surg 31:125–135. https://doi.org/10.1016/j.arthro.2014.08.008

    Article  Google Scholar 

  61. Smith KM, Le ADK, Costouros JG, Dragoo JL (2018) Biologics for rotator cuff repair: a critical analysis review. JBJS Rev 6:e8–e8. https://doi.org/10.2106/JBJS.RVW.17.00185

    Article  PubMed  Google Scholar 

  62. Malavolta EA, Gracitelli MEC, Assunção JH, Ferreira Neto AA, Bordalo-Rodrigues M, de Camargo OP (2018) Clinical and structural evaluations of rotator cuff repair with and without added platelet-rich plasma at 5-year follow-up: a prospective randomized study. Am J Sports Med 46:3134–3141. https://doi.org/10.1177/0363546518795895

    Article  PubMed  Google Scholar 

  63. Jo CH, Shin JS, Shin WH, Lee SY, Yoon KS, Shin S (2015) Platelet-rich plasma for arthroscopic repair of medium to large rotator cuff tears: a randomized controlled trial. Am J Sports Med 43:2102–2110. https://doi.org/10.1177/0363546515587081

    Article  PubMed  Google Scholar 

  64. Pandey V, Bandi A, Madi S, Agarwal L, Acharya KKV, Maddukuri S, Sambhaji C, Willems WJ (2016) Does application of moderately concentrated platelet-rich plasma improve clinical and structural outcome after arthroscopic repair of medium-sized to large rotator cuff tear? A randomized controlled trial. J Shoulder Elbow Surg 25:1312–1322. https://doi.org/10.1016/j.jse.2016.01.036

    Article  PubMed  Google Scholar 

  65. Zhao D, Han Y, Pan J, Yang W, Zeng L, Liang G, Liu J (2020) The clinical efficacy of leukocyte-poor platelet-rich plasma in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2020.10.014

    Article  PubMed  Google Scholar 

  66. Saltzman BM, Jain A, Campbell KA, Mascarenhas R, Romeo AA, Verma NN, Cole BJ (2016) Does the use of platelet-rich plasma at the time of surgery improve clinical outcomes in arthroscopic rotator cuff repair when compared with control cohorts? A systematic review of meta-analyses. Arthrosc J Arthrosc Relat Surg 32:906–918. https://doi.org/10.1016/j.arthro.2015.10.007

    Article  Google Scholar 

  67. Chen X, Jones IA, Togashi R, Park C, Vangsness CT (2020) Use of platelet-rich plasma for the improvement of pain and function in rotator cuff tears: a systematic review and meta-analysis with bias assessment. Am J Sports Med 48:2028–2041. https://doi.org/10.1177/0363546519881423

    Article  PubMed  Google Scholar 

  68. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF (2016) Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med 4:232596711562548. https://doi.org/10.1177/2325967115625481

    Article  Google Scholar 

  69. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM (2013) Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Jt Surg Am 95:1312–1316. https://doi.org/10.2106/JBJS.L.01529

    Article  Google Scholar 

  70. Hernigou P, Homma Y, Flouzat Lachaniette CH, Poignard A, Allain J, Chevallier N, Rouard H (2013) Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop 37:2279–2287. https://doi.org/10.1007/s00264-013-2017-z

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jager M, Jelinek E, Wess K, Scharfstadt A, Jacobson M, Kevy S, Krauspe R (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 4:34–43. https://doi.org/10.2174/157488809787169039

    Article  PubMed  Google Scholar 

  72. Simmons P, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62. https://doi.org/10.1182/blood.V78.1.55.55

    Article  CAS  PubMed  Google Scholar 

  73. Kraeutler MJ, Chahla J, LaPrade RF, Pascual-Garrido C (2017) Biologic options for articular cartilage wear (platelet-rich plasma, stem cells, bone marrow aspirate concentrate). Clin Sports Med 36:457–468. https://doi.org/10.1016/j.csm.2017.02.004

    Article  PubMed  Google Scholar 

  74. Imam MA, Mahmoud SSS, Holton J, Abouelmaati D, Elsherbini Y, Snow M (2017) A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in orthopaedics. SICOT-J 3:17. https://doi.org/10.1051/sicotj/2017007

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88 Suppl 1 Pt 2:322–327. https://doi.org/10.2106/JBJS.F.00203

  76. Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM (2017) One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc 25:2494–2501. https://doi.org/10.1007/s00167-016-3984-6

    Article  PubMed  Google Scholar 

  77. Keeling LE, Belk JW, Kraeutler MJ, Kallner AC, Lindsay A, McCarty EC, Postma WF (2022) Bone marrow aspirate concentrate for the treatment of knee osteoarthritis: a systematic review. Am J Sports Med 50(8):2315–2323. https://doi.org/10.1177/03635465211018837

  78. Kim J-D, Lee GW, Jung GH, Kim CK, Kim T, Park JH, Cha SS, You Y-B (2014) Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol 24:1505–1511. https://doi.org/10.1007/s00590-013-1393-9

    Article  PubMed  Google Scholar 

  79. Imam MA, Holton J, Ernstbrunner L, Pepke W, Grubhofer F, Narvani A, Snow M (2017) A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int Orthop 41:2213–2220. https://doi.org/10.1007/s00264-017-3597-9

    Article  PubMed  Google Scholar 

  80. Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, Hendrich C, Krauspe R (2011) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 29:173–180. https://doi.org/10.1002/jor.21230

    Article  PubMed  Google Scholar 

  81. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR (2014) Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res 472:3789–3797. https://doi.org/10.1007/s11999-014-3548-3

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B (2011) One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. CARTILAGE 2:286–299. https://doi.org/10.1177/1947603510392023

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gobbi A, Whyte GP (2016) One-stage cartilage repair using a hyaluronic acid–based scaffold with activated bone marrow–derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med 44:2846–2854. https://doi.org/10.1177/0363546516656179

    Article  PubMed  Google Scholar 

  84. Hauser RA, Orlofsky A (2013) Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series. Clin Med Insights Arthritis Musculoskelet Disord 6:CMAMD.S10951. https://doi.org/10.4137/CMAMD.S10951

  85. Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O’Connor MI (2017) A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med 45:82–90. https://doi.org/10.1177/0363546516662455

    Article  PubMed  Google Scholar 

  86. Centeno C, Pitts J, Al-Sayegh H, Freeman M (2014) Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. BioMed Res Int 2014:1–9. https://doi.org/10.1155/2014/370621

    Article  Google Scholar 

  87. Cavallo C, Boffa A, Andriolo L, Silva S, Grigolo B, Zaffagnini S, Filardo G (2021) Bone marrow concentrate injections for the treatment of osteoarthritis: evidence from preclinical findings to the clinical application. Int Orthop 45:525–538. https://doi.org/10.1007/s00264-020-04703-w

    Article  PubMed  Google Scholar 

  88. Hernigou J, Picard L, Alves A, Silvera J, Homma Y, Hernigou P (2014) Understanding bone safety zones during bone marrow aspiration from the iliac crest: the sector rule. Int Orthop 38:2377–2384. https://doi.org/10.1007/s00264-014-2343-9

    Article  PubMed  Google Scholar 

  89. Bain BJ (2003) Bone marrow biopsy morbidity and mortality: Short Report. Br J Haematol 121:949–951. https://doi.org/10.1046/j.1365-2141.2003.04329.x

    Article  PubMed  Google Scholar 

  90. Husebye EE, Lyberg T, Røise O (2006) Bone marrow fat in the circulation: clinical entities and pathophysiological mechanisms. Injury 37:S8–S18. https://doi.org/10.1016/j.injury.2006.08.036

    Article  PubMed  Google Scholar 

  91. Murray IR, Corselli M, Petrigliano FA, Soo C, Péault B (2014) Recent insights into the identity of mesenchymal stem cells: implications for orthopaedic applications. Bone Jt J 96-B:291–298. https://doi.org/10.1302/0301-620X.96B3.32789

  92. Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E (2013) Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc 21:1717–1729. https://doi.org/10.1007/s00167-012-2329-3

    Article  PubMed  Google Scholar 

  93. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15. https://doi.org/10.1016/j.stem.2011.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  95. Lodi D, Iannitti T, Palmieri B (2011) Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 30:9. https://doi.org/10.1186/1756-9966-30-9

    Article  PubMed  PubMed Central  Google Scholar 

  96. Marmotti A, de Girolamo L, Bonasia DE, Bruzzone M, Mattia S, Rossi R, Montaruli A, Dettoni F, Castoldi F, Peretti G (2014) Bone marrow derived stem cells in joint and bone diseases: a concise review. Int Orthop 38:1787–1801. https://doi.org/10.1007/s00264-014-2445-4

    Article  PubMed  Google Scholar 

  97. Haleem AM, Singergy AAE, Sabry D, Atta HM, Rashed LA, Chu CR, Shewy MTE, Azzam A, Aziz MTA (2010) The clinical use of human culture–expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. CARTILAGE 1:253–261. https://doi.org/10.1177/1947603510366027

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nejadnik H, Hui JH, Feng Choong EP, Tai B-C, Lee EH (2010) Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38:1110–1116. https://doi.org/10.1177/0363546509359067

    Article  PubMed  Google Scholar 

  99. Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, Rouard H (2014) Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop 38:1811–1818. https://doi.org/10.1007/s00264-014-2391-1

    Article  PubMed  Google Scholar 

  100. Utsunomiya H, Uchida S, Sekiya I, Sakai A, Moridera K, Nakamura T (2013) Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears. Am J Sports Med 41:657–668. https://doi.org/10.1177/0363546512473269

    Article  PubMed  Google Scholar 

  101. Wolfstadt JI, Cole BJ, Ogilvie-Harris DJ, Viswanathan S, Chahal J (2015) Current concepts: the role of mesenchymal stem cells in the management of knee osteoarthritis. Sports Health Multidiscip Approach 7:38–44. https://doi.org/10.1177/1941738114529727

    Article  Google Scholar 

  102. Epanomeritakis IE, Lee E, Lu V, Khan W (2022) The use of autologous chondrocyte and mesenchymal stem cell implants for the treatment of focal chondral defects in human knee joints—a systematic review and meta-analysis. Int J Mol Sci 23:4065. https://doi.org/10.3390/ijms23074065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B (2011) Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients: mesenchymal stem cell therapy for knee osteoarthritis. Int J Rheum Dis 14:211–215. https://doi.org/10.1111/j.1756-185X.2011.01599.x

    Article  PubMed  Google Scholar 

  104. Dragoo JL, Carlson G, McCormick F, Khan-Farooqi H, Zhu M, Zuk PA, Benhaim P (2007) Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng 13:1615–1621. https://doi.org/10.1089/ten.2006.0249

    Article  CAS  PubMed  Google Scholar 

  105. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32:1254–1266. https://doi.org/10.1002/stem.1634

    Article  CAS  PubMed  Google Scholar 

  106. Kim H-J, Im G-I (2009) Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. J Orthop Res 27:612–619. https://doi.org/10.1002/jor.20766

    Article  CAS  PubMed  Google Scholar 

  107. Nakamura T, Sekiya I, Muneta T, Hatsushika D, Horie M, Tsuji K, Kawarasaki T, Watanabe A, Hishikawa S, Fujimoto Y, Tanaka H, Kobayashi E (2012) Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy 14:327–338. https://doi.org/10.3109/14653249.2011.638912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kondo S, Nakagawa Y, Mizuno M, Katagiri K, Tsuji K, Kiuchi S, Ono H, Muneta T, Koga H, Sekiya I (2019) Transplantation of aggregates of autologous synovial mesenchymal stem cells for treatment of cartilage defects in the femoral condyle and the femoral groove in Microminipigs. Am J Sports Med 47:2338–2347. https://doi.org/10.1177/0363546519859855

    Article  PubMed  Google Scholar 

  109. Kubosch EJ, Heidt E, Niemeyer P, Bernstein A, Südkamp NP, Schmal H (2017) In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation — a comparison: synovial stem cells as an alternative cell source for autologous chondrocyte implantation. Int Orthop 41:991–998. https://doi.org/10.1007/s00264-017-3400-y

    Article  PubMed  Google Scholar 

  110. Tsanaktsidou E, Kammona O, Kiparissides C (2022) Recent developments in hyaluronic acid-based hydrogels for cartilage tissue engineering applications. Polymers 14:839. https://doi.org/10.3390/polym14040839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rai V, Dilisio MF, Dietz NE, Agrawal DK (2017) Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering: tissue engineering, scaffold, and cartilage repair. J Biomed Mater Res A 105:2343–2354. https://doi.org/10.1002/jbm.a.36087

    Article  CAS  PubMed  Google Scholar 

  112. Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, Li C (2020) Advancements and frontiers in the high performance of natural hydrogels for cartilage tissue engineering. Front Chem 8:53. https://doi.org/10.3389/fchem.2020.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  CAS  PubMed  Google Scholar 

  114. Trzeciak T, Richter M, Suchorska W, Augustyniak E, Lach M, Kaczmarek M, Kaczmarczyk J (2016) Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries. Int Orthop 40:615–624. https://doi.org/10.1007/s00264-015-3099-6

    Article  PubMed  Google Scholar 

  115. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M (2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26:4273–4279. https://doi.org/10.1016/j.biomaterials.2004.10.037

    Article  CAS  PubMed  Google Scholar 

  116. Morille M, Toupet K, Montero-Menei CN, Jorgensen C, Noël D (2016) PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis. Biomaterials 88:60–69. https://doi.org/10.1016/j.biomaterials.2016.02.022

    Article  CAS  PubMed  Google Scholar 

  117. Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed V (2022) A review of recent advances in natural polymer-based scaffolds for musculoskeletal tissue engineering. Polymers 14:2097. https://doi.org/10.3390/polym14102097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25. https://doi.org/10.1016/j.actbio.2017.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Thiem A, Bagheri M, Große-Siestrup C, Zehbe R (2016) Gelatin-poly(lactic-co-glycolic acid) scaffolds with oriented pore channel architecture — from in vitro to in vivo testing. Mater Sci Eng C 62:585–595. https://doi.org/10.1016/j.msec.2016.02.019

    Article  CAS  Google Scholar 

  120. Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA–gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27:4573–4580. https://doi.org/10.1016/j.biomaterials.2006.04.013

    Article  CAS  PubMed  Google Scholar 

  121. Gouveia PJ, Hodgkinson T, Amado I, Sadowska JM, Ryan AJ, Romanazzo S, Carroll S, Cryan S-A, Kelly DJ, O’Brien FJ (2021) Development of collagen-poly(caprolactone)-based core-shell scaffolds supplemented with proteoglycans and glycosaminoglycans for ligament repair. Mater Sci Eng C 120:111657. https://doi.org/10.1016/j.msec.2020.111657

    Article  CAS  Google Scholar 

  122. Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37:1–57. https://doi.org/10.1615/CritRevBiomedEng.v37.i1-2.10

    Article  PubMed  PubMed Central  Google Scholar 

  123. Thorp H, Kim K, Kondo M, Maak T, Grainger DW, Okano T (2021) Trends in articular cartilage tissue engineering: 3D mesenchymal stem cell sheets as candidates for engineered hyaline-like cartilage. Cells 10:643. https://doi.org/10.3390/cells10030643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shimizu R, Kamei N, Adachi N, Hamanishi M, Kamei G, Mahmoud EE, Nakano T, Iwata T, Yamato M, Okano T, Ochi M (2015) Repair mechanism of osteochondral defect promoted by bioengineered chondrocyte sheet. Tissue Eng Part A 21:1131–1141. https://doi.org/10.1089/ten.tea.2014.0310

    Article  CAS  PubMed  Google Scholar 

  125. Sato M, Yamato M, Mitani G, Takagaki T, Hamahashi K, Nakamura Y, Ishihara M, Matoba R, Kobayashi H, Okano T, Mochida J, Watanabe M (2019) Combined surgery and chondrocyte cell-sheet transplantation improves clinical and structural outcomes in knee osteoarthritis. Npj Regen Med 4:4. https://doi.org/10.1038/s41536-019-0069-4

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hernigou P, Bouthors C, Bastard C, Flouzat Lachaniette CH, Rouard H, Dubory A (2021) Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years? A randomized study. Int Orthop 45(2):391–399. https://doi.org/10.1007/s00264-020-04687-7

    Article  PubMed  Google Scholar 

  127. Hernigou P, Delambre J, Quiennec S, Poignard A (2021) Human bone marrow mesenchymal stem cell injection in subchondral lesions of knee osteoarthritis: a prospective randomized study versus contralateral arthroplasty at a mean fifteen year follow-up. Int Orthop 45(2):365–373. https://doi.org/10.1007/s00264-020-04571-4

    Article  PubMed  Google Scholar 

  128. Hernigou P, Dubory A, Homma Y, Guissou I, Flouzat Lachaniette CH, Chevallier N, Rouard H (2018) Cell therapy versus simultaneous contralateral decompression in symptomatic corticosteroid osteonecrosis: a thirty year follow-up prospective randomized study of one hundred and twenty five adult patients. Int Orthop 42(7):1639–1649. https://doi.org/10.1007/s00264-018-3941-8

    Article  PubMed  Google Scholar 

  129. Xiang X-N, Zhu S-Y, He H-C, Yu X, Xu Y, He C-Q (2022) Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther 13:14. https://doi.org/10.1186/s13287-021-02689-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to equal amount of work (conception and design, literature review, writing, analysis and revision of the paper, and supervision).

Corresponding author

Correspondence to Andreas F. Mavrogenis.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

All authors consent for this paper to be published.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavrogenis, A.F., Karampikas, V., Zikopoulos, A. et al. Orthobiologics: a review. International Orthopaedics (SICOT) 47, 1645–1662 (2023). https://doi.org/10.1007/s00264-023-05803-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05803-z

Keywords

Navigation