Skip to main content

Advertisement

Log in

Customized three dimensional printed prosthesis as a novel intercalary reconstruction for resection of extremity bone tumours: a retrospective cohort study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

A Correction to this article was published on 19 September 2022

This article has been updated

Abstract

Aims

The 3D-printed prosthesis (3DP) is a novel treatment for massive bone defect reconstruction after tumor resection. This study was aiming to explore the clinical efficacy of customized 3DP for intercalary reconstruction by comparing the clinical outcomes after implanting customized 3DP or conventional allograft in limb salvage surgery.

Methods

A total of 28 patients with extremity bone tumors who underwent customized 3DP or conventional allograft reconstruction between 2011 and 2018 at our institution were analyzed retrospectively. Among them, 14 cases received customized 3DP reconstruction (3DP group), and 14 cases received conventional allograft reconstruction (control group). Demographics, surgical outcomes, radiographical assessments, limb functions, and post-operative complications between these two groups were collected to evaluate clinical outcomes.

Results

No significant difference was observed in the demographics, mean intra-operative blood loss, MOSI scores, and MSTS scores between the two groups. Patients in 3DP group had a shorter operative time (157.9 vs 199.6 min, p = 0.03) and lesser number of fluoroscopy (4.1 vs 8.1, p < 0.001) compared to control group. The mean time to osseointegration at bone-implant interfaces in 3DP group was significantly earlier than that in control group (6.1 vs 12.2 months, p < 0.001). Moreover, the 3DP group had a significantly lower post-operative complication rate than the control group (7% vs 50%, p = 0.03).

Conclusions

The customized 3DP might provide a promising strategy for intercalary reconstruction in limb salvage surgery with more precise reconstruction, higher surgical efficiency, and comparable satisfactory clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Evans DR, Lazarides AL, Visgauss JD, Somarelli JA, Blazer DG 3rd, Brigman BE, Eward WC (2020) Limb salvage versus amputation in patients with osteosarcoma of the extremities: an update in the modern era using the National Cancer Database. Bmc Cancer 20(1):995. https://doi.org/10.1186/s12885-020-07502-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Imura Y, Takenaka S, Kakunaga S, Nakai T, Wakamatsu T, Outani H, Tanaka T, Tamiya H, Oshima K, Hamada K, Naka N, Araki N, Kudawara I, Ueda T, Yoshikawa H (2019) Survival analysis of elderly patients with osteosarcoma. Int Orthop 43(7):1741–1747. https://doi.org/10.1007/s00264-019-04332-y

    Article  PubMed  Google Scholar 

  3. Zhang Z, Liu X, Cheng D, Dang J, Mi Z, Shi Y, Wang L, Fan H (2022) Unfolded protein response-related signature associates with the immune microenvironment and prognostic prediction in osteosarcoma. Front Genet 8(13):911346. https://doi.org/10.3389/fgene.2022.911346

    Article  CAS  Google Scholar 

  4. Nakamura T, Abudu A, Grimer RJ, Carter SR, Jeys L, Tillman RM (2013) The clinical outcomes of extracorporeal irradiated and re-implanted cemented autologous bone graft of femoral diaphysis after tumour resection. Int Orthop 37(4):647–651. https://doi.org/10.1007/s00264-012-1715-2

    Article  PubMed  Google Scholar 

  5. Fuchs B, Ossendorf C, Leerapun T, Sim FH (2008) Intercalary segmental reconstruction after bone tumor resection. Eur J Surg Oncol 34(12):1271–1276. https://doi.org/10.1016/j.ejso.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  6. Wang PH, Chen CM, Chen CF, Chen WM, Wu PK (2021) Comparison of recycled autograft versus allograft in osteosarcoma with pathological fracture. Int Orthop 45(8):2149–2158. https://doi.org/10.1007/s00264-021-05121-2

    Article  PubMed  Google Scholar 

  7. Zekry KM, Yamamoto N, Hayashi K, Takeuchi A, Higuchi T, Abe K, Taniguchi Y, Alkhooly AZAA, Abd-Elfattah AS, Fouly EH, Ahmed AR, Tsuchiya H (2017) Intercalary frozen autograft for reconstruction of malignant bone and soft tissue tumours. Int Orthop 41(7):1481–1487. https://doi.org/10.1007/s00264-017-3446-x

    Article  PubMed  Google Scholar 

  8. Errani C, Tsukamoto S, Almunhaisen N, Mavrogenis A, Donati D (2021) Intercalary reconstruction following resection of diaphyseal bone tumors: a systematic review. J Clin Orthop Trauma 19:1–10. https://doi.org/10.1016/j.jcot.2021.04.033

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dubory A, Mascard E, Dahan M, Anract P, Court C, Boisgard S, Viard B, Missenard G, SOFCOT (The French Society of Orthopaedic and Trauma Surgery) (2017) Long-term functional and radiological outcomes of allograft hip prosthesis composite. Int Orthop 41(7):1337–1345. https://doi.org/10.1007/s00264-016-3351-8

    Article  PubMed  Google Scholar 

  10. Sanders PTJ, Spierings JF, Albergo JI, Bus MPA, Fiocco M, Farfalli GL, van de Sande MAJ, Aponte-Tinao LA, Dijkstra PDS (2020) Long-term clinical outcomes of intercalary allograft reconstruction for lower-extremity bone tumors. J Bone Joint Surg Am 102(12):1042–1049. https://doi.org/10.2106/JBJS.18.00893

    Article  CAS  PubMed  Google Scholar 

  11. Bus MP, Dijkstra PD, van de Sande MA, Taminiau AH, Schreuder HW, Jutte PC, van der Geest IC, Schaap GR, Bramer JA (2014) Intercalary allograft reconstructions following resection of primary bone tumors: a nationwide multicenter study. J Bone Joint Surg Am 96(4):e26. https://doi.org/10.2106/JBJS.M.00655

    Article  CAS  PubMed  Google Scholar 

  12. Aponte-Tinao LA, Albergo JI, Ayerza MA, Muscolo DL, Ing FM, Farfalli GL (2018) What are the complications of allograft reconstructions for sarcoma resection in children younger than 10 years at long-term followup? Clin Orthop Relat Res 476(3):548–555. https://doi.org/10.1007/s11999.0000000000000055

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fan H, Guo Z, Fu J, Li X, Li J, Wang Z (2017) Surgical management of pelvic Ewing’s sarcoma in children and adolescents. Oncol Lett 14(4):3917–3926. https://doi.org/10.3892/ol.2017.6677 (Epub 2017 Jul 26)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu Z, Fu J, Wang Z, Li X, Li J, Pei Y, Pei G, Li D, Guo Z, Fan H (2015) Three-dimensional virtual bone bank system for selecting massive bone allograft in orthopaedic oncology. Int Orthop 39(6):1151–1158. https://doi.org/10.1007/s00264-015-2719-5

    Article  PubMed  Google Scholar 

  15. Liu BY, Cao G, Dong Z, Chen W, Xu JK, Guo T (2019) The application of 3D-printed titanium mesh in maxillary tumor patients undergoing total maxillectomy. J Mater Sci Mater Med 30(11):125. https://doi.org/10.1007/s10856-019-6326-7

    Article  CAS  PubMed  Google Scholar 

  16. Kamel MK, Cheng A, Vaughan B, Stiles B, Altorki N, Spector JA, Port JL (2020) Sternal reconstruction using customized 3D-printed titanium implants. Ann Thorac Surg 109(6):e411–e414. https://doi.org/10.1016/j.athoracsur.2019.09.087

    Article  PubMed  Google Scholar 

  17. Dong C, Wei H, Zhu Y, Zhou J, Ma H (2020) Application of titanium alloy 3D-printed artificial vertebral body for stage III Kümmell’s disease complicated by neurological deficits. Clin Interv Aging 15:2265–2276. https://doi.org/10.2147/CIA.S283809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jovičić MŠ, Vuletić F, Ribičić T, Šimunić S, Petrović T, Kolundžić R (2021) Implementation of the three-dimensional printing technology in treatment of bone tumours: a case series. Int Orthop 45(4):1079–1085. https://doi.org/10.1007/s00264-020-04787-4 (Epub 2020 Sep 8 PMID: 32901331)

    Article  PubMed  Google Scholar 

  19. Angelini A, Trovarelli G, Berizzi A, Pala E, Breda A, Ruggieri P (2019) Three-dimension-printed custom-made prosthetic reconstructions: from revision surgery to oncologic reconstructions. Int Orthop 43(1):123–132. https://doi.org/10.1007/s00264-018-4232-0

    Article  PubMed  Google Scholar 

  20. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl 59:690–701. https://doi.org/10.1016/j.msec.2015.10.069

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Wei Q, Zhou H, Jing Z, Liu X, Zheng Y, Cai H, Wei F, Jiang L, Yu M, Cheng Y, Fan D, Zhou W, Lin X, Leng H, Li J, Li X, Wang C, Tian Y, Liu Z (2021) Three-dimensional-printed individualized porous implants: a new “implant-bone” interface fusion concept for large bone defect treatment. Bioact Mater 6(11):3659–3670. https://doi.org/10.1016/j.bioactmat.2021.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iqbal T, Wang L, Li D, Dong E, Fan H, Fu J, Hu C (2019) A general multi-objective topology optimization methodology developed for customized design of pelvic prostheses. Med Eng Phys 69:8–16. https://doi.org/10.1016/j.medengphy.2019.06.008

    Article  PubMed  Google Scholar 

  23. Fan H, Fu J, Li X, Pei Y, Li X, Pei G, Guo Z (2015) Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature. World J Surg Oncol 13:308. https://doi.org/10.1186/s12957-015-0723-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu D, Fu J, Fan H, Li D, Dong E, Xiao X, Wang L, Guo Z (2018) Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: A case report. J Bone Oncol 12:78–82. https://doi.org/10.1016/j.jbo.2018.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhu D, Fu J, Wang L, Guo Z, Wang Z, Fan H (2021) Reconstruction with customized, 3D-printed prosthesis after resection of periacetabular Ewing’s sarcoma in children using “triradiate cartilage-based” surgical strategy:a technical note. J Orthop Translat 28:108–117. https://doi.org/10.1016/j.jot.2020.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu W, Shao Z, Rai S, Hu B, Wu Q, Hu H, Zhang S, Wang B (2020) Three-dimensional-printed intercalary prosthesis for the reconstruction of large bone defect after joint-preserving tumor resection. J Surg Oncol 121(3):570–577. https://doi.org/10.1002/jso.25826

    Article  PubMed  Google Scholar 

  27. Zhao D, Tang F, Min L, Lu M, Wang J, Zhang Y, Zhao K, Zhou Y, Luo Y, Tu C (2020) Intercalary reconstruction of the “ultra-critical sized bone defect” by 3d-printed porous prosthesis after resection of tibial malignant tumor. Cancer Manag Res 12:2503–2512. https://doi.org/10.2147/CMAR.S245949

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341. https://doi.org/10.1007/s11548-010-0476-x

    Article  CAS  PubMed  Google Scholar 

  29. Nagano S, Yokouchi M, Setoguchi T, Sasaki H, Shimada H, Kawamura I, Ishidou Y, Kamizono J, Yamamoto T, Kawamura H, Komiya S (2014) Analysis of surgical site infection after musculoskeletal tumor surgery: risk assessment using a new scoring system. Sarcoma 2014:645496. https://doi.org/10.1155/2014/645496

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lu Y, Chen G, Long Z, Li M, Ji C, Wang F, Li H, Lu J, Wang Z, Li J (2019) Novel 3D-printed prosthetic composite for reconstruction of massive bone defects in lower extremities after malignant tumor resection. J Bone Oncol 16:100220. https://doi.org/10.1016/j.jbo.2019.100220.PMID:31044134;PMCID:PMC6479734

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu L, Qin H, Tan J, Cheng Z, Luo X, Tan H, Huang W (2021) Clinical study of 3D printed personalized prosthesis in the treatment of bone defect after pelvic tumor resection. J Orthop Translat 29:163–169. https://doi.org/10.1016/j.jot.2021.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liang H, Guo W, Yang Y, Li D, Yang R, Tang X, Yan T (2022) Efficacy and safety of a 3D-printed arthrodesis prosthesis for reconstruction after resection of the proximal humerus: preliminary outcomes with a minimum 2-year follow-up. Bmc Musculoskelet Disord 23(1):635. https://doi.org/10.1186/s12891-022-05581-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang B, Hao Y, Pu F, Jiang W, Shao Z (2017) Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour. Int Orthop 42(3):687–694. https://doi.org/10.1007/s00264-017-3645-5

    Article  PubMed  Google Scholar 

  34. Avritscher R, Javadi S (2011) Transcatheter intra-arterial limb infusion for extremity osteosarcoma: technical considerations and outcomes. Tech Vasc Interv Radiol 14(3):124–128. https://doi.org/10.1053/j.tvir.2011.02.004

    Article  PubMed  Google Scholar 

  35. Wang F, Zhu J, Peng X, Su J (2017) The application of 3D printed surgical guides in resection and reconstruction of malignant bone tumor. Oncol Lett 14(4):4581–4584. https://doi.org/10.3892/ol.2017.6749

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rocha T, Cavalcanti AS, Leal AC, Dias RB, da Costa RS, Ribeiro GO, Guimarães JAM, Duarte MEL (2021) PTH1-34 improves devitalized allogenic bone graft healing in a murine femoral critical size defect. Injury 52(Suppl 3):S3–S12. https://doi.org/10.1016/j.injury.2021.03.063

    Article  PubMed  Google Scholar 

  37. Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br 89(5):574–579. https://doi.org/10.1302/0301-620X.89B5.19039

    Article  CAS  PubMed  Google Scholar 

  38. Erivan R, Villatte G, Cueff R, Boisgard S, Descamps S (2017) Rehydration improves the ductility of dry bone allografts. Cell Tissue Bank 18(3):307–312. https://doi.org/10.1007/s10561-017-9630-9 (Epub 2017 May 12 PMID: 28500505)

    Article  CAS  PubMed  Google Scholar 

  39. Liu Q, He H, Duan Z, Zeng H, Yuan Y, Wang Z, Luo W (2020) Intercalary allograft to reconstruct large-segment diaphysis defects after resection of lower extremity malignant bone tumor. Cancer Manag Res 12:4299–4308. https://doi.org/10.2147/CMAR.S257564

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen Z, Yan X, Yin S, Liu L, Liu X, Zhao G, Ma W, Qi W, Ren Z, Liao H, Liu M, Cai D, Fang H (2020) Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl 106:110289. https://doi.org/10.1016/j.msec.2019.110289

    Article  CAS  PubMed  Google Scholar 

  41. Kang J, Dong E, Li X, Guo Z, Shi L, Li D, Wang L (2021) Topological design and biomechanical evaluation for 3D printed multi-segment artificial vertebral implants. Mater Sci Eng C Mater Biol Appl 127:112250. https://doi.org/10.1016/j.msec.2021.112250

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Coiradas J, Garcia-Maroto R, Cebrian JL, Lopez-Duran L (2015) Structural bone allograft fractures in oncological procedures. Int Orthop 39(11):2261–2265. https://doi.org/10.1007/s00264-015-2980

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 31971272); National Key R&D Program of China (No. 2016YFB1101104); Shaanxi Provincial Key R&D Program (No. 2018ZDXM-SF-075).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hongbin Fan, Zhao Zhang, Yubo Shi, and Jun Fu. The first draft of the manuscript was written by Zhao Zhang, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongbin Fan.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the institutional review board of Xi-Jing Hospital, the Fourth Military Medical University (no. 2018–122(H)).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for publication of the images in Figs. 14 and Supplementary file.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Level of evidence: Therapeutic Level IV.

The original version of this article was revised. The correct statement should be: Zhao Zhang, Yubo Shi and Jun Fu contributed equally to this work.

Supplementary Information

(MP4 25.4 mb)

ESM 2

(DOC 3.14 mb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Shi, Y., Fu, J. et al. Customized three dimensional printed prosthesis as a novel intercalary reconstruction for resection of extremity bone tumours: a retrospective cohort study. International Orthopaedics (SICOT) 46, 2971–2981 (2022). https://doi.org/10.1007/s00264-022-05559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-022-05559-y

Keywords

Navigation