Skip to main content
Log in

Accuracy of three dimensional-planned patient-specific instrumentation in femoral and tibial rotational osteotomy for patellofemoral instability

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Patellofemoral instability can be caused by tibial or femoral torsional deformity. Established surgical treatment options are rotational osteotomies, but the transfer from pre-operative planning to surgical execution can be challenging. Patient-specific instruments (PSI) are proofed to be helpful tools in realignment surgery. However, accuracy of PSI in femoral and tibial rotational osteotomies remains still unknown. Goal of the present study was to evaluate the accuracy of PSI in femoral and tibial rotational osteotomies in a patient population suffering from patellofemoral instability.

Methods

All patients that underwent femoral or tibial rotational osteotomy using PSI in case of patellofemoral instability from October 2015 until April 2019 in our clinic were included. Twelve knees with twelve supracondylar femoral and seven supratuberositary tibial rotational osteotomies could be included. Accuracy of the correction was assessed using pre- and post-operative CT scans based on conventional measurements and, in 3D, based on 3D bone models of the respective patients.

Results

CT measurements revealed an absolute difference between planned and achieved rotation of 4.8° ± 3.1° for femoral and 7.9° ± 3.7° for tibial rotational osteotomies without significant difference (p = 0.069). Regarding 3D assessment, a significant difference could be observed for the residual error between femoral and tibial rotational osteotomies in the 3D angle (p = 0.014) with a higher accuracy for the femoral side.

Conclusion

The application of PSI for femoral and tibial rotational osteotomy is a safe surgical treatment option. Accuracy for femoral rotational osteotomies is higher compared with tibial rotational osteotomies using PSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hinterwimmer S, Rosenstiel N, Lenich A, Waldt S, Imhoff AB (2012) Femoral osteotomy for patellofemoral instability. Unfallchirurg 115(5):410–416. https://doi.org/10.1007/s00113-012-2198-8

    Article  PubMed  CAS  Google Scholar 

  2. Nelitz M, Dreyhaupt J, Williams SR, Dornacher D (2015) Combined supracondylar femoral derotation osteotomy and patellofemoral ligament reconstruction for recurrent patellar dislocation and severe femoral anteversion syndrome: surgical technique and clinical outcome. Int Orthop 39(12):2355–2362. https://doi.org/10.1007/s00264-015-2859-7

    Article  PubMed  Google Scholar 

  3. Drexler M, Dwyer T, Dolkart O, Goldstein Y, Steinberg EL, Chakravertty R, Cameron JC (2014) Tibial rotational osteotomy and distal tuberosity transfer for patella subluxation secondary to excessive external tibial torsion: surgical technique and clinical outcome. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 22(11):2682–2689. https://doi.org/10.1007/s00167-013-2561-5

    Article  CAS  Google Scholar 

  4. Imhoff FB, Cotic M, Liska F, Dyrna FGE, Beitzel K, Imhoff AB, Herbst E (2019) Derotational osteotomy at the distal femur is effective to treat patients with patellar instability. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 27(2):652–658. https://doi.org/10.1007/s00167-018-5212-z

    Article  Google Scholar 

  5. Lee SY, Jeong J, Lee K, Chung CY, Lee KM, Kwon SS, Choi Y, Kim TG, Lee JI, Lee J, Park MS (2014) Unexpected angular or rotational deformity after corrective osteotomy. BMC Musculoskelet Disord 15:175. https://doi.org/10.1186/1471-2474-15-175

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nelitz M, Wehner T, Steiner M, Durselen L, Lippacher S (2014) The effects of femoral external derotational osteotomy on frontal plane alignment. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 22(11):2740–2746. https://doi.org/10.1007/s00167-013-2618-5

    Article  CAS  Google Scholar 

  7. Imhoff FB, Scheiderer B, Zakko P, Obopilwe E, Liska F, Imhoff AB, Mazzocca AD, Arciero RA, Beitzel K (2017) How to avoid unintended valgus alignment in distal femoral derotational osteotomy for treatment of femoral torsional malalignment - a concept study. BMC Musculoskelet Disord 18(1):553. https://doi.org/10.1186/s12891-017-1904-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jud L, Vlachopoulos L, Haller TV, Fucentese SF, Rahm S, Zingg PO (2020) The impact of mal-angulated femoral rotational osteotomies on mechanical leg axis: a computer simulation model. BMC musculoskeletal disorders 21 (1):50. https://doi.org/10.1186/s12891-020-3075-1

  9. Jacquet C, Chan-Yu-Kin J, Sharma A, Argenson JN, Parratte S, Ollivier M (2018) More accurate correction using “patient-specific” cutting guides in opening wedge distal femur varization osteotomies. Int Orthop. https://doi.org/10.1007/s00264-018-4207-1

  10. Munier M, Donnez M, Ollivier M, Flecher X, Chabrand P, Argenson JN, Parratte S (2017) Can three-dimensional patient-specific cutting guides be used to achieve optimal correction for high tibial osteotomy? Pilot study. Orthopaedics & traumatology, surgery & research : OTSR 103(2):245–250. https://doi.org/10.1016/j.otsr.2016.11.020

    Article  CAS  Google Scholar 

  11. Shi J, Lv W, Wang Y, Ma B, Cui W, Liu Z, Han K (2019) Three dimensional patient-specific printed cutting guides for closing-wedge distal femoral osteotomy. Int Orthop 43(3):619–624. https://doi.org/10.1007/s00264-018-4043-3

    Article  PubMed  Google Scholar 

  12. Waidelich HA, Strecker W, Schneider E (1992) Computed tomographic torsion-angle and length measurement of the lower extremity. The methods, normal values and radiation load. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 157(3):245–251. https://doi.org/10.1055/s-2008-1033007

    Article  PubMed  CAS  Google Scholar 

  13. Goutallier D, Van Driessche S, Manicom O, Sariali E, Bernageau J, Radier C (2006) Influence of lower-limb torsion on long-term outcomes of tibial valgus osteotomy for medial compartment knee osteoarthritis. J Bone Joint Surg Am 88(11):2439–2447. https://doi.org/10.2106/JBJS.E.01130

    Article  PubMed  Google Scholar 

  14. Vlachopoulos L, Schweizer A, Graf M, Nagy L, Fürnstahl P (2015) Three-dimensional postoperative accuracy of extra-articular forearm osteotomies using CT-scan based patient-specific surgical guides. BMC Musculoskelet Disord 16:336. https://doi.org/10.1186/s12891-015-0793-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K (2008) Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am 90(11):2375–2389. https://doi.org/10.2106/JBJS.G.01299

    Article  PubMed  Google Scholar 

  16. Schweizer A, Fürnstahl P, Harders M, Szekely G, Nagy L (2010) Complex radius shaft malunion: osteotomy with computer-assisted planning. Hand (N Y) 5(2):171–178. https://doi.org/10.1007/s11552-009-9233-4

    Article  Google Scholar 

  17. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D'Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I, Standardization, Terminology Committee of the International Society of B (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35 (4):543–548

  18. Schneider P, Eberly DH (2002) Geometric tools for computer graphics. MorganKaufmann

    Google Scholar 

  19. Fürnstahl P, Schweizer A, Graf M, Vlachopoulos L, Fucentese S, Wirth S, Nagy L, Szekely G, Goksel O (2016) Surgical treatment of long-bone deformities: 3D preoperative planning and patient-specific instrumentation. Computational radiology for orthopaedic interventions. Springer, New York, pp 123–149

    Google Scholar 

  20. Landis JR, Koch GC (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  21. Fiz N, Delgado D, Sanchez X, Sanchez P, Bilbao AM, Oraa J, Sanchez M (2017) Application of 3D technology and printing for femoral derotation osteotomy: case and technical report. Annals of translational medicine 5 (20):400. Doi:https://doi.org/10.21037/atm.2017.07.03

  22. Dobbe JG, Pre KJ, Kloen P, Blankevoort L, Streekstra GJ (2011) Computer-assisted and patient-specific 3-D planning and evaluation of a single-cut rotational osteotomy for complex long-bone deformities. Medical & biological engineering & computing 49(12):1363–1370. https://doi.org/10.1007/s11517-011-0830-3

    Article  CAS  Google Scholar 

  23. Kolp D, Ziebarth K, Slongo T (2017) Rotation or derotation osteotomy of the tibia. Operative Orthopadie und Traumatologie 29(2):163–172. https://doi.org/10.1007/s00064-016-0473-5

    Article  PubMed  CAS  Google Scholar 

  24. Rattey T, Hyndman J (1994) Rotational osteotomies of the leg: tibia alone versus both tibia and fibula. J Pediatr Orthop 14(5):615–618. https://doi.org/10.1097/01241398-199409000-00012

    Article  PubMed  CAS  Google Scholar 

  25. Ryan DD, Rethlefsen SA, Skaggs DL, Kay RM (2005) Results of tibial rotational osteotomy without concomitant fibular osteotomy in children with cerebral palsy. J Pediatr Orthop 25(1):84–88. https://doi.org/10.1097/00004694-200501000-00019

    Article  PubMed  Google Scholar 

  26. Schroter S, Ihle C, Elson DW, Dobele S, Stockle U, Ateschrang A (2016) Surgical accuracy in high tibial osteotomy: coronal equivalence of computer navigation and gap measurement. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 24(11):3410–3417. https://doi.org/10.1007/s00167-016-3983-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Jud.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The local ethical committee approved this study (Zurich Cantonal Ethics Committee, KEK 2018–02242) and all patients gave their informed consent for their participation in and the publication of this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jud, L., Vlachopoulos, L., Beeler, S. et al. Accuracy of three dimensional-planned patient-specific instrumentation in femoral and tibial rotational osteotomy for patellofemoral instability. International Orthopaedics (SICOT) 44, 1711–1717 (2020). https://doi.org/10.1007/s00264-020-04496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04496-y

Keywords

Navigation