Skip to main content

Advertisement

Log in

Can the gracilis replace the anterior cruciate ligament in the knee? A biomechanical study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine whether a four-strand gracilis-only construct possesses the biomechanical properties needed to act as an anterior cruciate ligament (ACL) reconstruction graft.

Methods

This was a pilot study with 32 cadaver specimens. The biomechanical properties of three types of grafts were determined using validated tensile testing methods: patellar tendon (BTB), both hamstring tendons together (GST4) and gracilis alone (G4).

Results

The maximum load at failure of the G4 was 416.4 N (±187.7). The GST4 and BTB had a maximum load at failure of 473.5 N (±176.9) and 413.3 N (±120.4), respectively. The three groups had similar mean maximum load and stiffness values. The patellar tendon had significantly less elongation at failure than the other two graft types.

Conclusions

The biomechanical properties of a four-strand gracilis construct are comparable to the ones of standard grafts. This type of graft would be useful in the reconstruction of the anteromedial bundle in patients with partial ACL ruptures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bonamo JJ, Krinick RM, Sporn AA (1984) Rupture of the patellar ligament after use of its central third for anterior cruciate reconstruction. A report of two cases. J Bone Joint Surg Am 66(8):1294–1297

    CAS  PubMed  Google Scholar 

  2. Goyal S, Matias N, Pandey V, Acharya K (2015) Are pre-operative anthropometric parameters helpful in predicting length and thickness of quadrupled hamstring graft for ACL reconstruction in adults? A prospective study and literature review. Int Orthop. doi:10.1007/s00264-015-2818-3

    PubMed  Google Scholar 

  3. Stevanovic V, Blagojevic Z, Petkovic A, Glisic M, Sopta J, Nikolic V, Milisavljevic M (2013) Semitendinosus tendon regeneration after anterior cruciate ligament reconstruction: can we use it twice? Int Orthop 37(12):2475–2481

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nakamura N, Horibe S, Sasaki S et al (2002) Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons. Arthroscopy 18(6):598–602

    Article  PubMed  Google Scholar 

  5. Pailhe R, Cavaignac E, Murgier J et al (2015) Biomechanical study of ACL reconstruction grafts. J Orthop Res. doi:10.1002/jor.22889

    PubMed  Google Scholar 

  6. Shelburne KB, Torry MR, Pandy MG (2005) Effect of muscle compensation on knee instability during ACL-deficient gait. Med Sci Sports Exerc 37(4):642–648

    Article  PubMed  Google Scholar 

  7. Cavaignac E, Pailhe R, Murgier J et al (2014) Can the gracilis be used to replace the anterior cruciate ligament in the knee? A cadaver study. Knee 21(6):1014-1017. doi:10.1016/j.knee.2014.07.010

    Article  PubMed  Google Scholar 

  8. Zamarra G, Fisher MB, Woo SL, Cerulli G (2010) Biomechanical evaluation of using one hamstrings tendon for ACL reconstruction: a human cadaveric study. Knee Surg Sports Traumatol Arthrosc 18(1):11–19. doi:10.1007/s00167-009-0911-0

    Article  PubMed  Google Scholar 

  9. Handl M, Drzik M, Cerulli G et al (2007) Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft. Knee Surg Sports Traumatol Arthrosc 15(3):233–241. doi:10.1007/s00167-006-0175-x

    Article  PubMed  Google Scholar 

  10. Sajovic M, Vengust V, Komadina R et al (2006) A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med 34(12):1933–1940. doi:10.1177/0363546506290726

    Article  PubMed  Google Scholar 

  11. Neyret P, Demey G (2012) Reconstruction du ligament croisé antérieur: technique chirurgicale. In: Traité de chirurgie du genou. Elsevier Masson, Paris, pp 41-64

  12. Huang H, Zhang J, Sun K et al (2011) Effects of repetitive multiple freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis and flexor pollicis longus tendons. Clin Biomech (Bristol, Avon) 26(4):419–423. doi:10.1016/j.clinbiomech.2010.12.006

    Article  Google Scholar 

  13. Shi D, Wang D, Wang C, Liu A (2012) A novel, inexpensive and easy to use tendon clamp for in vitro biomechanical testing. Med Eng Phys 34(4):516–520. doi:10.1016/j.medengphy.2011.11.019

    Article  PubMed  Google Scholar 

  14. Yanke AB, Bell R, Lee AS et al (2013) Central-third bone-patellar tendon-bone allografts demonstrate superior biomechanical failure characteristics compared with hemi-patellar tendon grafts. Am J Sports Med 41(11):2521–2526. doi:10.1177/0363546513501780

    Article  PubMed  Google Scholar 

  15. Hertzog MA (2008) Considerations in determining sample size for pilot studies. Res Nurs Health 31(2):180–191. doi:10.1002/nur.20247

    Article  PubMed  Google Scholar 

  16. Pujol N, Queinnec S, Boisrenoult P, Maqdes A, Beaufils P (2013) Anatomy of the anterior cruciate ligament related to hamstring tendon grafts. A cadaveric study. Knee 20(6):511–514. doi:10.1016/j.knee.2012.10.006

    Article  PubMed  Google Scholar 

  17. Marzo JM, Bowen MK, Warren RF et al (1992) Intraarticular fibrous nodule as a cause of loss of extension following anterior cruciate ligament reconstruction. Arthroscopy 8(1):10–18

    Article  CAS  PubMed  Google Scholar 

  18. Buda R, Ruffilli A, Parma A et al (2013) Partial ACL tears: anatomic reconstruction versus nonanatomic augmentation surgery. Orthopedics 36(9):e1108–e1113. doi:10.3928/01477447-20130821-10

    Article  PubMed  Google Scholar 

  19. Sonnery-Cottet B, Panisset JC, Colombet P et al (2012) Partial ACL reconstruction with preservation of the posterolateral bundle. Orthop Traumatol Surg Res 98(8 Suppl):S165–S170. doi:10.1016/j.otsr.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  20. Pujol N, Colombet P, Potel JF et al (2012) Anterior cruciate ligament reconstruction in partial tear: selective anteromedial bundle reconstruction conserving the posterolateral remnant versus single-bundle anatomic ACL reconstruction: preliminary 1-year results of a prospective randomized study. Orthop Traumatol Surg Res 98(8 Suppl):S171–S177. doi:10.1016/j.otsr.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  21. Moon DK, Woo SL, Takakura Y et al (2006) The effects of refreezing on the viscoelastic and tensile properties of ligaments. J Biomech 39(6):1153–1157. doi:10.1016/j.jbiomech.2005.02.012

    Article  PubMed  Google Scholar 

  22. Noyes FR, DeLucas JL, Torvik PJ (1974) Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am 56(2):236–253

    CAS  PubMed  Google Scholar 

  23. Butler DL, Grood ES, Noyes FR et al (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 17(8):579–596

    Article  CAS  PubMed  Google Scholar 

  24. Cheung JT, Zhang M (2006) A serrated jaw clamp for tendon gripping. Med Eng Phys 28(4):379–382. doi:10.1016/j.medengphy.2005.07.010

    Article  PubMed  Google Scholar 

  25. Pap K, Hangody G, Szebenyi G, Rita K, Panics G, Hangody L (2014) An easy way to fix tendon allografts into a loading—machine for biomechanical testing. Paper presented at the 16th ESSKA Congress, Amsterdam, 14-17 May

  26. van Dommelen JA, Jolandan MM, Ivarsson BJ et al (2006) Nonlinear viscoelastic behavior of human knee ligaments subjected to complex loading histories. Ann Biomed Eng 34(6):1008–1018. doi:10.1007/s10439-006-9100-1

    Article  PubMed  Google Scholar 

  27. Noyes FR, Butler DL, Grood ES et al (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66(3):344–352

    CAS  PubMed  Google Scholar 

  28. Chandrashekar N, Mansouri H, Slauterbeck J et al (2006) Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech 39(16):2943–2950

    Article  PubMed  Google Scholar 

  29. Elias JJ, Rai SP, Ciccone WJ et al (2008) In vitro comparison of tension and stiffness between hamstring tendon and patella tendon grafts. J Orthop Res 26(11):1506–1511

    Article  PubMed  Google Scholar 

  30. Harner CD, Baek GH, Vogrin TM et al (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749

    Article  CAS  PubMed  Google Scholar 

  31. Hashemi J, Mansouri H, Chandrashekar N et al (2011) Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J Orthop Res 29(7):993–1001

    Article  PubMed  Google Scholar 

  32. Hoher J, Offerhaus C, Steenlage E et al (2013) Impact of tendon suturing on the interference fixation strength of quadrupled hamstring tendon grafts. Arch Orthop Trauma Surg 133(9):1309–1314

    Article  PubMed  Google Scholar 

  33. Kennedy JC, Hawkins RJ, Willis RB et al (1976) Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments. J Bone Joint Surg Am 58(3):350–355

    CAS  PubMed  Google Scholar 

  34. Meuffels DE, Niggebrugge MJ, Verhaar JA (2009) Failure load of patellar tendon grafts at the femoral side: 10- versus 20-mm-bone blocks. Knee Surg Sports Traumatol Arthrosc 17(2):135–139

    Article  PubMed  Google Scholar 

  35. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58(8):1074–1082

    CAS  PubMed  Google Scholar 

  36. Prietto C (1995) Anterior cruciate ligament repair in children. West J Med 163(6):567–568

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Race A, Amis AA (1994) The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech 27(1):13–24

    Article  CAS  PubMed  Google Scholar 

  38. Trent PS, Walker PS, Wolf B (1976) Ligament length patterns, strength, and rotational axes of the knee joint. Clin Orthop Relat Res 117:263–270

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Joanne Archambault, PhD for the editorial support during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Cavaignac.

Ethics declarations

Conflict of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaignac, E., Pailhé, R., Reina, N. et al. Can the gracilis replace the anterior cruciate ligament in the knee? A biomechanical study. International Orthopaedics (SICOT) 40, 1647–1653 (2016). https://doi.org/10.1007/s00264-015-3027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-3027-9

Keywords

Navigation