Skip to main content

Advertisement

Log in

Inhibition of osteolysis after local administration of osthole in a TCP particles-induced osteolysis model

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Wear debris-induced osteolysis and aseptic loosening are the most frequent late complications of total joint arthroplasty leading to revision of the prosthesis. However, no effective measures for the prevention and treatment of particles-induced osteolysis currently exist. Here, we investigated the efficacy of local administration of osthole on tricalcium phosphate (TCP) particles-induced osteolysis in a murine calvarial model.

Methods

TCP particles were implanted over the calvaria of ICR mice, and established TCP particles-induced osteolysis model. On days one, four, seven, ten and thirteen post-surgery, osthole (10 mg/kg) or phosphate buffer saline (PBS) were subcutaneously injected into the calvaria of TCP particles-implanted or sham-operated mice. Two weeks later, blood, the periosteum and the calvaria were collected and processed for bone turnover markers, pro-inflammatory cytokine, histomorphometric and molecular analysis.

Results

Osthole (10 mg/kg) markedly prevented TCP particles-induced osteoclastogenesis and bone resorption in a mouse calvarial model. Osthole also inhibited the decrease of serum osteocalcin level and calvarial alkaline phosphatase (ALP) activity, and prevented the increase in the activity of tartrate resistant acid phosphatase (TRAP) and cathepsin K in the mouse calvaria. Furthermore, osthole obviously reduced the release of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) into the periosteum. Western blotting demonstrated TCP particles caused a remarkable endoplasmic reticulum (ER) stress response in the mouse calvaria, which was obviously blocked by osthole treatment.

Conclusion

These results suggest that local administration of osthole inhibits TCP particles-induced osteolysis in the mouse calvarial in vivo, which may be mediated by inhibition of the ER stress signaling pathway, and it will be developed as a new drug in the prevention and treatment of destructive diseases caused by prosthetic wear particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harris WH (2001) Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res 393:66–70

    Article  PubMed  Google Scholar 

  2. Fu CF, Xie J, Hu N, Liang X, Chen RF, Wang CL, Chen C, Xu CM, Huang W, Paul Sung KL (2014) Titanium particles up-regulate the activity of matrix metalloproteinase-2 in human synovial cells. Int Orthop 38(5):1091–1098

    Article  PubMed  Google Scholar 

  3. Katsuyama E, Miyamoto H, Kobayashi T, Sato Y, Hao W, Kanagawa H, Fujie A, Tando T, Watanabe R, Morita M, Miyamoto K, Niki Y, Morioka H, Matsumoto M, Toyama Y, Miyamoto T (2015) Interleukin-1 receptor-associated kinase-4 (IRAK4) promotes inflammatory osteolysis by activating osteoclasts and inhibiting formation of foreign body giant cells. J Biol Chem 290(2):716–726

    Article  CAS  PubMed  Google Scholar 

  4. Vallés G, Pérez C, Boré A, Martín-Saavedra F, Saldaña L, Vilaboa N (2013) Simvastatin prevents the induction of interleukin-6 gene expression by titanium particles in human osteoblastic cells. Acta Biomater 9(1):4916–4925

    Article  PubMed  Google Scholar 

  5. Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77(2):177–197

    Article  PubMed  Google Scholar 

  6. Wu SJ (2015) Osthole attenuates inflammatory responses and regulates the expression of inflammatory mediators in HepG2 cells grown in differentiated medium from 3T3-L1 preadipocytes. J Med Food 18(9):972–979

    Article  CAS  PubMed  Google Scholar 

  7. Wang XL, Shang X, Cui Y, Zhao X, Zhang Y, Xie ML (2015) Osthole inhibits inflammatory cytokine release through PPARα/γ-mediated mechanisms in LPS-stimulated 3T3-L1 adipocytes. Immunopharmacol Immunotoxicol 37(2):185–192

    Article  CAS  PubMed  Google Scholar 

  8. Li ZP, Ji HJ, Song XY, Hu JF, Han N, Chen NH (2014) Osthole attenuates the development of carrageenan-induced lung inflammation in rats. Int Immunopharmacol 20(1):33–36

    Article  PubMed  Google Scholar 

  9. Zheng Y, Lu M, Ma L, Zhang S, Qiu M, Ma X (2013) Osthole ameliorates renal ischemia-reperfusion injury by inhibiting inflammatory response. Urol Int 91(3):350–356

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Zhang W, Zhou L, Wang X, Lian Q (2005) Anti-inflammatory effect and mechanism of osthole in rats. Zhong Yao Cai 28(11):1002–1006

    PubMed  Google Scholar 

  11. Tian B, Jiang T, Shao Z, Zhai Z, Li H, Fan Q, Liu X, Ouyang Z, Tang T, Jiang Q, Zheng M, Dai K, Qin A, Yu Y, Zhu Z (2014) The prevention of titanium-particle-induced osteolysis by OA-14 through the suppression of the p38 signaling pathway and inhibition of osteoclastogenesis. Biomaterials 35(32):8937–8950

    Article  CAS  PubMed  Google Scholar 

  12. Kim JA, Ihn HJ, Park JY, Lim J, Hong JM, Kim SH, Kim SY, Shin HI, Park EK (2015) Inhibitory effects of triptolide on titanium particle-induced osteolysis and receptor activator of nuclear factor-κB ligand-mediated osteoclast differentiation. Int Orthop 39(1):173–182

    Article  PubMed  Google Scholar 

  13. Rao AJ, Zwingenberger S, Valladares R, Li C, Lane Smith R, Goodman SB, Nich C (2013) Direct subcutaneous injection of polyethylene particles over the murine calvaria results in dramatic osteolysis. Int Orthop 37(7):1393–1398

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smith BJ, Bu SY, Wang Y, Rendina E, Lim YF, Marlow D, Clarke SL, Cullen DM, Lucas EA (2014) A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat. Bone 58:151–159

    Article  CAS  PubMed  Google Scholar 

  15. Iitsuka N, Hie M, Tsukamoto I (2013) Zinc supplementation inhibits the increase in osteoclastogenesis and decrease in osteoblastogenesis in streptozotocin-induced diabetic rats. Eur J Pharmacol 714(1–3):41–47

    Article  CAS  PubMed  Google Scholar 

  16. Kandel-Kfir M, Almog T, Shaish A, Shlomai G, Anafi L, Avivi C, Barshack I, Grosskopf I, Harats D, Kamari Y (2015) Interleukin-1α deficiency attenuates endoplasmic reticulum stress-induced liver damage and CHOP expression in mice. J Hepatol 63(4):926–933

    Article  CAS  PubMed  Google Scholar 

  17. Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, Van Eylen F, Mandrup-Poulsen T, Herchuelz A, Eizirik DL (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54(2):452–461

    Article  CAS  PubMed  Google Scholar 

  18. Liu G, Liu N, Xu Y, Ti Y, Chen J, Chen J, Zhang J, Zhao J (2015) Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis. Cell Tissue Res. 2015 May 26. [Epub ahead of print]

  19. Wang R, Wang ZH, Ma YT, Liu GY, Shi H, Chen JN, Dong L, Zhao JN, Zhang JF (2013) Particle-induced osteolysis mediated by endoplasmic reticulum stress in prosthesis loosening. Biomaterials 34(11):2611–2623

    Article  CAS  PubMed  Google Scholar 

  20. Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, Beckmann D, Paruzel P, Bertrand J, Redlich K, Koers-Wunrau C, Stratis A, Korb-Pap A, Pap T (2015) Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med 21(9):1085–1090

    Article  CAS  PubMed  Google Scholar 

  21. Ming LG, Zhou J, Cheng GZ, Ma HP, Chen KM (2011) Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro. Pharmacology 88(1–2):33–43

    Article  CAS  PubMed  Google Scholar 

  22. Tang DZ, Hou W, Zhou Q, Zhang M, Holz J, Sheu TJ, Li TF, Cheng SD, Shi Q, Harris SE, Chen D, Wang YJ (2010) Osthole stimulates osteoblast differentiation and bone formation by activation of beta-catenin-BMP signaling. J Bone Miner Res 25(6):1234–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meng F, Xiong Z, Sun Y, Li F (2004) Coumarins from Cnidium monnieri (L.) and their proliferation stimulating activity on osteoblast-like UMR106 cells. Pharmazie 59(8):643–645

    CAS  PubMed  Google Scholar 

  24. Ming LG, Wang MG, Chen KM, Zhou J, Han GQ, Zhu RQ (2012) Effect of osthole on apoptosis and bone resorption of osteoclasts cultured in vitro. Yao Xue Xue Bao 47(2):174–179

    CAS  PubMed  Google Scholar 

  25. Li XX, Hara I, Matsumiya T (2002) Effects of osthole on postmenopausal osteoporosis using ovariectomized rats; comparison to the effects of estradiol. Biol Pharm Bull 25(6):738–742

    Article  CAS  PubMed  Google Scholar 

  26. Ding Y, Qin CQ, Fu YR, Xu J, Huang DS (2012) In vitro comparison of the biological activity of alumina ceramic and titanium particles associated with aseptic loosening. Biomed Mater 7(4):045019–045019

    Article  PubMed  Google Scholar 

  27. Obando-Pereda GA, Fischer L, Stach-Machado DR (2014) Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sci 97(2):96–106

    Article  CAS  PubMed  Google Scholar 

  28. Kim S, Joe Y, Kim HJ, Kim YS, Jeong SO, Pae HO, Ryter SW, Surh YJ, Chung HT (2015) Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production. J Immunol 194(9):4498–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Zhejiang Provincial Natural Science Foundation of China (No. LY13H060003 and No. LY15H180012), Scientific Research Foundation of Traditional Chinese Medicine in Zhejiang Province (No.2012ZB161) and Science & Technology Innovation Project of College Students in Zhejiang Province (No. 2013R426025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Zhang, Y., Yan, M. et al. Inhibition of osteolysis after local administration of osthole in a TCP particles-induced osteolysis model. International Orthopaedics (SICOT) 40, 1545–1552 (2016). https://doi.org/10.1007/s00264-015-3021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-3021-2

Keywords

Navigation