Skip to main content

Advertisement

Log in

Minimally invasive surgery with locking plate for periprosthetic femoral fractures: technical note

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Periprosthetic fractures of the femur are increasing due to the increase of arthroplasties and the aging population. They concern a population that is often elderly and with important comorbidities that complicate managing this already complex pathology. Usual complications of classic osteosynthesis are numerous, including infections and nonunions and the need for delayed weight bearing after surgery.

Methods—results

The development of locking plates has allowed complication avoidance. When used in minimally invasive surgery, they combine the biological advantages of closed-wound surgery to the mechanical advantages of locking plates, which have better stability in fragile bones. We propose a technical update on handling such fractures by using locking plates under minimally invasive surgery.

Discussion—conclusion

In our experience, under certain guidelines, this allows for immediate post-operative full weight bearing, which is beneficial to these often elderly patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bégué T, Thomazeau H, Adam P et al (2006) Fractures périprothétiques autour des prothèses du genou et de la hanche. Rev Chir Orthop 92(suppl):S29–S96

    Google Scholar 

  2. Wagner M (2003) General principes for the clinical use of the LCP. Injury 34(Suppl 2):31–42

    Article  Google Scholar 

  3. Perren SM (2002) Evolution of the fixation of long bones fractures. The scientific basis of biological internal fixation : choosing a new balance between stability and biology. J Bone Joint Surg Br 84:1093–1110

    Article  PubMed  Google Scholar 

  4. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H (1999) Minimally invasive plate osteosynthesis: does percutaneus plating disrupt femoral blood supply less than the traditionnal technique ? J Orthop Trauma 13:401–6

    Article  CAS  PubMed  Google Scholar 

  5. Ehlinger M, Adam P, Abane L, Rahmé M, Moor BK, Arlettaz Y, Bonnomet F (2001) Treatment of periprosthetic femoral fractures of the knee. Knee Surg Sports Traumatol Arthrosc 19:1473–8

    Article  Google Scholar 

  6. Ehlinger M, Adam P, Di Marco A, Arlettaz Y, Moor BK, Bonnomet F. Periprosthetic femoral fracture treated by locked plating: feasibility assessment of the mini-invasive surgical option. A prospective series of 36 fractures

  7. Ehlinger M, Brinkert D, Besse J, Adam P, Arlettaz Y, Bonnomet F (2011) Reversed anatomic distal femur locking plate for periprosthetic hip fracture fixation. Orthop Traumatol Surg Res 97:560–4

    Article  CAS  PubMed  Google Scholar 

  8. Lenz M, Windolf M, Muckley T, Hofmann GO, Wagner M, Richards RG, Schwieger K, Guerorguiev B (2012) The locking attachment plate for proximal fixation of periprosthetic femur fractures—a biomechanical comparison of two techniques. Int Orthop 36:1915–21

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ehlinger M, Adam P, Bonnomet F (2010) Minimally invasive locking screw plate fixation of non-articular proximal and distal tibia fractures. Orthop Traumatol Surg Res 96:800–9

    Article  CAS  PubMed  Google Scholar 

  10. Ehlinger M, Adam P, Abane L, Arlettaz Y, Bonnomet F (2011) Minimally-invasive internal fixation of extra-articular distal femur fractures using a locking plate: tricks of the trade. Orthop Traumatol Surg Res 97:201–5

    Article  CAS  PubMed  Google Scholar 

  11. Hou Z, Moore B, Bowen TR, Irgit K, Matzko ME, Strohecker KA, Smith WR (2011) Treatment of interprosthetic fractures of the femur. J Trauma 71:1715–9

    Article  PubMed  Google Scholar 

  12. Dougherty PJ, Kim DG, Meisterling S, Wybo C, Yeni Y (2008) Biomechanical comparison of bicortical versus unicortical screw placement of proximal tibia locking plates: a cadaveric model. J Orthop Trauma 22:399–403

    Article  PubMed  Google Scholar 

  13. Lenz M, Perren SM, Richards RG, Muckley T, Hofmann GO, Gueorguiev B, Windolf M (2013) Biomechanical performance of different cable and wire cerclage configurations. Int Orthop 37:125–30

    Article  PubMed Central  PubMed  Google Scholar 

  14. Wahnert D, Schroder R, Schulze M, Westerhoff P, Raschke M, Stange R (2014) Biomechanical comparison of two angular stable plate construction for periprosthetic femur fracture fixation. Int Orthop 38:47–53

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kammerlander C, Kates SL, Wagner M, Roth T, Blauth M (2013) Minimally invasive periprosthetic plate osteosynthesis using the locking attachment plate. Oper Orthop Traumatol 25:398–408

    Article  CAS  PubMed  Google Scholar 

  16. Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS (2003) How can stability in locked internal fixators be controlled? Injury 34:11–19

    Article  Google Scholar 

  17. Duncan CP, Masri BA (1995) Fractures of the femur after hip replacement. Instr Course Lect 44:293–304

    CAS  PubMed  Google Scholar 

  18. Tricoire JL, Vogt F, Lafosse JM (2006) Classification radiologique des fractures autour des PTG. In symposium des fractures péri-prothétiques autour de la hanche et du genou. Rev Chir Orthop 92(suppl):S57–S60

    Google Scholar 

  19. Niikura T, Sakurai A, Oe K, Shibanuma N, Tsunoda M, Maruo A, Shoda E, Lee SY, Sakai Y (2014) Clinical and radiological results of locking plate fixation for periprosthetic femoral fractures around hip arthroplasties: a retrospective multi-center study. J Orthop Sci 19:984–90

    Article  PubMed  Google Scholar 

  20. Graham SM, Moazen M, Leonidou A, Tsiridis E (2013) Locking plate fixation for Vancouver B1 periprosthetic femoral fractures : a critical analysis of 135 cases. J Orthop Sci 18:426–36

    Article  PubMed  Google Scholar 

  21. Ruchholtz S, Tomas J, Gebhard F, Larsen MS (2013) Periprosthetic fractures around the knee—the best way of treatment. Eur Orthop Traumatol 4:93–102

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ricci WM, Loftus T, Cox C, Borelli J (2006) Locked plates combined with minimally invasive insertion technique for the treatment of periprosthetic supra condylar femur fractures above a total knee arthroplasty. J Orthop Trauma 20:190–6

    Article  PubMed  Google Scholar 

  23. Kregor PJ, Hugues JL, Cole PA (2001) Fixation of distal femoral fractures above total knee arthroplasty utilizing the Less Invasive Stabilization System (LISS). Injury 32(Suppl 3):SC64–SC75

    Article  PubMed  Google Scholar 

  24. Bae DK, Song SJ, Yoon KH, Kim TY (2014) Periprosthetic supracondylar femoral fractures above total knee arthroplasty: comparison of the locking and non-locking plating methods. Knne Surg Sports Traumatol Arthrosc 22:2690–7

    Article  Google Scholar 

  25. Apivatthakakul T, Phornphutkul C, Bunmapraset T, Sananpanich K, Fernandez Dell’Oca A (2012) Percutaneous cerclage wiring and minimally invasive plate osteosynthesis (MIPO): a percutaneous reduction technique in the treatment of Vancouver type B1 periprosthetic femoral shaft fractures. Arch Orthop Trauma Surg 132:813–22

    Article  PubMed  Google Scholar 

  26. Ebraheim NA, Sochacki KR, Liu X, Hirschfeld AG, Liu J (2013) Locking plate fixation of periprosthetic femur fractures with and without cerclage wires. Orthop Surg 5:183–7

    Article  PubMed  Google Scholar 

  27. Lenz M, Perren SM, Gueorguiev B, Richards RG, Hofmann GO, Fernandez dell’Oca A, Hontzsch D, Windolf M (2014) A biomechanical study on proximal plate fixation techniques in periprosthetic femur fractures. Injury 45(Suppl 1):S71–5

    Article  PubMed  Google Scholar 

  28. Kampshoff J, Stoffle KK, Yates PJ, Erhardt JB, Kuster MS (2010) The treatment of periprosthetic fractures with locking plates: effect of drill and screw type on cement mantles: a biomechanical analysis. Arch Orthop Trauma Surg 130:627–32

    Article  PubMed  Google Scholar 

  29. Giesinger K, Ebneter L, Day RE, Stoffel KK, Yates PJ, Kuster MS (2014) Can plate osteosynthesis of periprosthetic femoral fractures cause cement mantle failure around a stable hip stem ? A biomechanical analysis. J Arthroplasty 29:1308–12

    Article  PubMed  Google Scholar 

  30. Brand S, Klotz J, Hassel T, Petri M, Ettinger M, Krettek C, Goesling T, Bach FW (2013) Different thermal conductivity in drilling of cemented compared with cementless hip prostheses in the treatment of periprosthetic fractures of the proximal femur: an experimental biomechanical analysis. Int Orthop 37:1885–9

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lehmann W, Rupprecht M, Nuechten J, Melzner D, Sellenschloh K, Kolb J, Fensky F, Hoffmann M, Puschel K, Morlock M, Rueger JM (2012) What is the risk of stress risers for interprosthetic fractures of the femur ? A biomechanical analysis. Int Orthop 36:2441–6

    Article  PubMed Central  PubMed  Google Scholar 

  32. Otto RJ, Moed BR, Bledsoe JG (2009) Biomechanical comparison of polyaxial-type locking plates and a fixed-angle locking plate for internal fixation of distal femur fractures. J Orthop Trauma 23:645–52

    Article  PubMed  Google Scholar 

  33. Wilkens KJ, Curtiss S, Lee MA (2008) Polyaxial locking plate fixation in distal femur fractures : a biomechanical comparison. J Orthop Trauma 22:642–8

    Article  Google Scholar 

  34. Ruchholtz S, El-Zayat B, Kreslo D, Bucking B, Lewan U, Kruger A, Zettl R (2013) Less invasive polaxial locking plate fixation in periprosthetic and peri-implant fractures of the femur—a prospective study of 41 patients. Injury 44:239–48

    Article  PubMed  Google Scholar 

  35. Hebert-Davies J, Laflamme GY, Rouleau D, Canet F, Sandman E, Li A, Petit Y (2013) A biomechanical study comparing polyaxial locking screw mechanisms. Injury 44:1358–62

    Article  PubMed  Google Scholar 

  36. Bottlang M, Doornink J, Fitzpatrick DC, Madey SM (2009) Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am 91:1985–94

    Article  PubMed Central  PubMed  Google Scholar 

  37. Lujan TJ, Henderson CE, Maley SM, Fitzpatrock DC, Marsh JL, Bottlang M (2010) Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma 24:156–62

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Rommel Asagwara, MD, for his excellent contribution to translation of the manuscript.

Conflict of interest

ME and PA: consulting activity for DePuy Synthes; no financial conflict for this study.

BS, BS, DB, AD, MR, FB: none for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Ehlinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehlinger, M., Scheibling, B., Rahme, M. et al. Minimally invasive surgery with locking plate for periprosthetic femoral fractures: technical note. International Orthopaedics (SICOT) 39, 1921–1926 (2015). https://doi.org/10.1007/s00264-015-2928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2928-y

Keywords

Navigation