Skip to main content

Advertisement

Log in

Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to investigate the curative effects of transplantation of bone marrow mesenchymal stem cells (BMSCs) on intervertebral disc regeneration and to investigate the feasibility of the quantitative T2 mapping method for evaluating repair of the nucleus pulposus after implantation of BMSCs.

Methods

Forty-eight New Zealand white rabbits were used to establish the lumber disc degenerative model by stabbing the annulus fibrosus and then randomly divided into four groups, i.e. two weeks afterwards, BMSCs or phosphate-buffered saline (PBS) were transplanted into degenerative discs (BMSCs group and PBS group), while the operated rabbits without implantation of BMSCs or PBS served as the sham group and the rabbits without operation were used as the control group. At weeks two, six and ten after operation, the T2 values and disc height indices (DHI) were calculated by magnetic resonance imaging (MRI 3.0 T), and the gene expressions of type II collagen (COL2) and aggrecan (ACAN) in degenerative discs were evaluated by real-time reverse transcription polymerase chain reaction (RT-PCR). T2 values for the nucleus pulposus were correlated with ACAN or COL2 expression by regression analysis.

Results

Cell clusters, disorganised fibres, interlamellar glycosaminoglycan (GAG) matrix and vascularisation were observed in lumber degenerative discs. BMSCs could be found to survive in intervertebral discs and differentiate into nucleus pulposus-like cells expressing COL2 and ACAN. The gene expression of COL2 and ACAN increased during ten weeks after transplantation as well as the T2 signal intensity and T2 value. The DHI in the BMSCs group decreased more slowly than that in PBS and sham groups. The T2 value correlated significantly with the gene expression of ACAN and COL2 in the nucleus pulposus.

Conclusions

Transplantation of BMSCs was able to promote the regeneration of degenerative discs. Quantitative and non-invasive T2 mapping could be used to evaluate the regeneration of the nucleus pulposus with good sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dagenais S, Caro J, Haldeman S (2008) A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J 8:8–20

    Article  PubMed  Google Scholar 

  2. Sakai D (2008) Future perspectives of cell-based therapy for intervertebral disc disease. Eur Spine J 17(Suppl 4):452–458

    Article  PubMed Central  PubMed  Google Scholar 

  3. Phillips FM, Reuben J, Wetzel FT (2002) Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model. J Bone Joint Surg Br 84:289–294

    Article  CAS  PubMed  Google Scholar 

  4. Rui YF, Lui PP, Lee YW, Chan KM (2012) Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. Int Orthop 36:1099–1107

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tsai MT, Lin DJ, Huang S, Lin HT, Chang WH (2012) Osteogenic differentiation is synergistically influenced by osteoinductive treatment and direct cell-cell contact between murine osteoblasts and mesenchymal stem cells. Int Orthop 36:199–205

    Article  PubMed Central  PubMed  Google Scholar 

  6. Mueller MB, Blunk T, Appel B, Maschke A, Goepferich A, Zellner J, Englert C, Prantl L, Kujat R, Nerlich M, Angele P (2013) Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner. Int Orthop 37:153–158

    Article  PubMed Central  PubMed  Google Scholar 

  7. Qin L (2013) Translational medicine in orthopaedics. J Orthop Transl 1:3–5

    Article  Google Scholar 

  8. Ciapetti G, Granchi D, Devescovi V, Leonardi E, Greggi T, Di Silvestre M, Baldini N (2012) Ex vivo observation of human intervertebral disc tissue and cells isolated from degenerated intervertebral discs. Eur Spine J 21(Suppl 1):S10–S19

    Article  PubMed  Google Scholar 

  9. Roughley P, Martens D, Rantakokko J, Alini M, Mwale F, Antoniou J (2006) The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cell Mater 11:1–7, discussion 7

    CAS  PubMed  Google Scholar 

  10. Longo UG, Papapietro N, Petrillo S, Franceschetti E, Maffulli N, Denaro V (2012) Mesenchymal stem cell for prevention and management of intervertebral disc degeneration. Stem Cells Int 2012:921053

    PubMed Central  PubMed  Google Scholar 

  11. Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T (2003) Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24:3531–3541

    Article  CAS  PubMed  Google Scholar 

  12. Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine (Phila Pa 1976) 30:2379–2387

    Article  Google Scholar 

  13. Tertti M, Paajanen H, Laato M, Aho H, Komu M, Kormano M (1991) Disc degeneration in magnetic resonance imaging. A comparative biochemical, histologic, and radiologic study in cadaver spines. Spine (Phila Pa 1976) 16:629–634

    Article  CAS  Google Scholar 

  14. Antoniou J, Pike GB, Steffen T, Baramki H, Poole AR, Aebi M, Alini M (1998) Quantitative magnetic resonance imaging in the assessment of degenerative disc disease. Magn Reson Med 40:900–907

    Article  CAS  PubMed  Google Scholar 

  15. Nightingale T, MacKay A, Pearce RH, Whittall KP, Flak B (2000) A model of unloaded human intervertebral disk based on NMR relaxation. Magn Reson Med 43:34–44

    Article  CAS  PubMed  Google Scholar 

  16. Marinelli NL, Haughton VM, Muñoz A, Anderson PA (2009) T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine (Phila Pa 1976) 34:520–524

    Article  Google Scholar 

  17. Niu G, Yang J, Wang R, Dang S, Wu EX, Guo Y (2011) MR imaging assessment of lumbar intervertebral disk degeneration and age-related changes: apparent diffusion coefficient versus T2 quantitation. AJNR Am J Neuroradiol 32:1617–1623

    Article  CAS  PubMed  Google Scholar 

  18. Takashima H, Takebayashi T, Yoshimoto M, Terashima Y, Tsuda H, Ida K, Yamashita T (2012) Correlation between T2 relaxation time and intervertebral disk degeneration. Skeletal Radiol 41:163–167

    Article  PubMed  Google Scholar 

  19. Trattnig S, Stelzeneder D, Goed S, Reissegger M, Mamisch TC, Paternostro-Sluga T, Weber M, Szomolanyi P, Welsch GH (2010) Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T. Eur Radiol 20:2715–2722

    Article  PubMed  Google Scholar 

  20. Welsch GH, Mamisch TC, Hughes T, Zilkens C, Quirbach S, Scheffler K, Kraff O, Schweitzer ME, Szomolanyi P, Trattnig S (2008) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 43:619–626

    Article  PubMed  Google Scholar 

  21. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232:592–598

    Article  PubMed  Google Scholar 

  22. Menezes NM, Gray ML, Hartke JR, Burstein D (2004) T2 and T1rho MRI in articular cartilage systems. Magn Reson Med 51:503–509

    Article  CAS  PubMed  Google Scholar 

  23. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  24. Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, Gilbertson LG, Kang JD (2005) Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 5:14–23

    Article  PubMed  Google Scholar 

  25. Lu DS, Shono Y, Oda I, Abumi K, Kaneda K (1997) Effects of chondroitinase ABC and chymopapain on spinal motion segment biomechanics. An in vivo biomechanical, radiologic, and histologic canine study. Spine (Phila Pa 1976) 22:1828–1834, discussion 1834–1825

    Article  CAS  Google Scholar 

  26. Longo UG, Ripalda P, Denaro V, Forriol F (2006) Morphologic comparison of cervical, thoracic, lumbar intervertebral discs of cynomolgus monkey (Macaca fascicularis). Eur Spine J 15:1845–1851

    Article  PubMed Central  PubMed  Google Scholar 

  27. Krueger EC, Perry JO, Wu Y, Haughton VM (2007) Changes in T2 relaxation times associated with maturation of the human intervertebral disk. AJNR Am J Neuroradiol 28:1237–1241

    Article  CAS  PubMed  Google Scholar 

  28. Yang F, Leung VY, Luk KD, Chan D, Cheung KM (2009) Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells. Mol Ther 17:1959–1966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chiu EJ, Newitt DC, Segal MR, Hu SS, Lotz JC, Majumdar S (2001) Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro. Spine (Phila Pa 1976) 26:E437–E444

    Article  CAS  Google Scholar 

  30. Xie XH, Wang XL, He YX, Liu Z, Sheng H, Zhang G, Qin L (2012) Promotion of bone repair by implantation of cryopreserved bone marrow-derived mononuclear cells in a rabbit model of steroid-associated osteonecrosis. Arthritis Rheum 64:1562–1571

    Article  PubMed  Google Scholar 

  31. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S (2013) Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop 37:2491–2498

    Article  PubMed Central  PubMed  Google Scholar 

  32. Watanabe A, Benneker LM, Boesch C, Watanabe T, Obata T, Anderson SE (2007) Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol 189:936–942

    Article  PubMed  Google Scholar 

  33. Stelzeneder D, Kovacs BK, Goed S, Welsch GH, Hirschfeld C, Paternostro-Sluga T, Friedrich KM, Mamisch TC, Trattnig S (2012) Effect of short-term unloading on T2 relaxation time in the lumbar intervertebral disc–in vivo magnetic resonance imaging study at 3.0 tesla. Spine J 12:257–264

    Article  PubMed Central  PubMed  Google Scholar 

  34. Friedrich KM, Shepard T, de Oliveira VS, Wang L, Babb JS, Schweitzer M, Regatte R (2009) T2 measurements of cartilage in osteoarthritis patients with meniscal tears. AJR Am J Roentgenol 193:W411–415

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368

    Article  PubMed  Google Scholar 

  36. Zou J, Yang H, Miyazaki M, Morishita Y, Wei F, McGovern S, Wang JC (2009) Dynamic bulging of intervertebral discs in the degenerative lumbar spine. Spine (Phila Pa 1976) 34:2545–2550

    Article  Google Scholar 

  37. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62:3695–3705

    Article  PubMed  Google Scholar 

  38. Albert HB, Sorensen JS, Christensen BS, Manniche C (2013) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 22:697–707

    Article  PubMed Central  PubMed  Google Scholar 

  39. Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, Nørgaard HS, Vernallis A, Busch F, Manniche C, Elliott T (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22:690–696

    Article  PubMed Central  PubMed  Google Scholar 

  40. Aebi M (2013) Is low back pain after disc herniation with Modic type 1 changes a low-grade infection? Eur Spine J 22:689

    Article  PubMed Central  PubMed  Google Scholar 

  41. Aebi M (2013) The two papers of Hanne Albert et al. about Modic I changes of the vertebra published in the European Spine Journal of April 2013. Editorial. Eur Spine J 22:1693

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ahmad Z, Rai A, Donell S, Crawford R (2013) Letter to the editor concerning: “Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized controlled trial of efficacy” by Albert HB et al. Eur Spine J (2013) 22:697–707. Eur Spine J 22:2344–2345

    Article  PubMed Central  PubMed  Google Scholar 

  43. Almefty KK, Turner JD, Theodore N (2013) From narcotics to antibiotics: evolving concepts in the treatment of lower back pain. World Neurosurg 80:442–443

    Article  PubMed  Google Scholar 

  44. Dean BJ (2013) Do these results apply to the ‘intervention naive’ patient? Eur Spine J 22:1702

    Article  PubMed Central  PubMed  Google Scholar 

  45. Sotto A, Dupeyron A (2013) Letter to the editor concerning: “Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized controlled trial of efficacy” by Albert HB et al. Eur Spine J 22:697–707. Eur Spine J 22:1704–1705

    Article  PubMed Central  PubMed  Google Scholar 

  46. O’Dowd J, Casey A (2013) Antibiotics a cure for back pain, a false dawn or a new era? Eur Spine J 22:1694–1697

    Article  PubMed Central  PubMed  Google Scholar 

  47. Shubhakaran K, Khichar RJ (2013) Backache and infection. Eur Spine J 22:2348

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lings S (2014) Antibiotics for low back pain? Eur Spine J 23:469–472

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (81272035; 81071493; 81201423) and the 51st China Postdoctoral Science Foundation 2012 (2012 M511800). Thanks to Prof. Ling Qin (The Chinese University of Hong Kong) for language editing. Thanks to Yuan-cheng Wang (Southeast University) for MRI evaluation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Tao Wu or Xin-Hui Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, F., Wu, XT., Xie, XH. et al. Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits. International Orthopaedics (SICOT) 39, 149–159 (2015). https://doi.org/10.1007/s00264-014-2481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2481-0

Keywords

Navigation