Skip to main content

Advertisement

Log in

Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Insulin is a commonly used additive in chondrogenic media for differentiating mesenchymal stem cells (MSCs). The indispensability of other bioactive factors like TGF-β or dexamethasone in these medium formulations has been shown, but the role of insulin is unclear. The purpose of this study was to investigate whether insulin is essential for MSC chondrogenesis and if there is a dose-dependent effect of insulin on MSC chondrogenesis.

Methods

We cultivated human MSCs in pellet culture in serum-free chondrogenic medium with insulin concentrations between 0 and 50 μg/ml and assessed the grade of chondrogenic differentiation by histological evaluation and determination of glycosaminoglycan (GAG), total collagen and DNA content. We further tested whether insulin can be delivered in an amount sufficient for MSC chondrogenesis via a drug delivery system in insulin-free medium.

Results

Chondrogenesis was not induced by standard chondrogenic medium without insulin and the expression of cartilage differentiation markers was dose-dependent at insulin concentrations between 0 and 10 μg/ml. An insulin concentration of 50 μg/ml had no additional effect compared with 10 μg/ml. Insulin was delivered by a release system into the cell culture under insulin-free conditions in an amount sufficient to induce chondrogenesis.

Conclusions

Insulin is essential for MSC chondrogenesis in this system and chondrogenic differentiation is influenced by insulin in a dose-dependent manner. Insulin can be provided in a sufficient amount by a drug delivery system. Therefore, insulin is a suitable and inexpensive indicator substance for testing drug release systems in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272

    Article  PubMed  CAS  Google Scholar 

  2. Barone-Varelas J, Schnitzer TJ, Meng Q, Otten L, Thonar EJ (1991) Age-related differences in the metabolism of proteoglycans in bovine articular cartilage explants maintained in the presence of insulin-like growth factor I. Connect Tissue Res 26(1–2):101–120

    Article  PubMed  CAS  Google Scholar 

  3. Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC (2008) The potential of IGF-1 and TGFbeta1 for promoting “adult” articular cartilage repair: an in vitro study. Tissue Eng Part A 14(7):1251–1261

    Article  PubMed  CAS  Google Scholar 

  4. Loeser RF, Chubinskaya S, Pacione C, Im HJ (2005) Basic fibroblast growth factor inhibits the anabolic activity of insulin-like growth factor 1 and osteogenic protein 1 in adult human articular chondrocytes. Arthritis Rheum 52(12):3910–3917

    Article  PubMed  CAS  Google Scholar 

  5. Tyler JA (1989) Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem J 260(2):543–548

    PubMed  CAS  Google Scholar 

  6. Blunk T, Sieminski AL, Gooch KJ, Courter DL, Hollander AP, Nahir AM, Langer R, Vunjak-Novakovic G, Freed LE (2002) Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng 8(1):73–84

    Article  PubMed  CAS  Google Scholar 

  7. Elder BD, Athanasiou KA (2008) Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthritis Cartilage 17(1):114–123

    Article  PubMed  Google Scholar 

  8. Schmid C (1995) Insulin-like growth factors. Cell Biol Int 19(5):445–457

    Article  PubMed  CAS  Google Scholar 

  9. Kellner K, Schulz MB, Gopferich A, Blunk T (2001) Insulin in tissue engineering of cartilage: a potential model system for growth factor application. J Drug Target 9(6):439–448

    Article  PubMed  CAS  Google Scholar 

  10. Derfoul A, Perkins GL, Hall DJ, Tuan RS (2006) Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24(6):1487–1495

    Article  PubMed  CAS  Google Scholar 

  11. Buxton AN, Bahney CS, Yoo JU, Johnstone B (2011) Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels. Tissue Eng Part A 17(3–4):371–380

    Article  PubMed  CAS  Google Scholar 

  12. Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21(4):626–636

    Article  PubMed  CAS  Google Scholar 

  13. Uebersax L, Merkle HP, Meinel L (2008) Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release 127(1):12–21

    Article  PubMed  CAS  Google Scholar 

  14. Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ (2001) Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res 19(4):738–749

    Article  PubMed  CAS  Google Scholar 

  15. Appel B, Maschke A, Weiser B, Sarhan H, Englert C, Angele P, Blunk T, Gopferich A (2006) Lipidic implants for controlled release of bioactive insulin: effects on cartilage engineered in vitro. Int J Pharm 314(2):170–178

    Article  PubMed  CAS  Google Scholar 

  16. Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174(1):168–176

    Article  PubMed  CAS  Google Scholar 

  17. Woessner JF Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch Biochem Biophys 93:440–447

    Article  PubMed  CAS  Google Scholar 

  18. Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 93(4):1722–1732

    Article  PubMed  CAS  Google Scholar 

  19. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883(2):173–177

    Article  PubMed  CAS  Google Scholar 

  20. Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, O’Driscoll SW (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11(1):55–64

    Article  PubMed  CAS  Google Scholar 

  21. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 277(42):39684–39695

    Article  PubMed  CAS  Google Scholar 

  22. Nixon AJ, Lillich JT, Burton-Wurster N, Lust G, Mohammed HO (1998) Differentiated cellular function in fetal chondrocytes cultured with insulin-like growth factor-I and transforming growth factor-beta. J Orthop Res 16(5):531–541

    Article  PubMed  CAS  Google Scholar 

  23. Yeh LC, Adamo ML, Olson MS, Lee JC (1997) Osteogenic protein-1 and insulin-like growth factor I synergistically stimulate rat osteoblastic cell differentiation and proliferation. Endocrinology 138(10):4181–4190

    Article  PubMed  CAS  Google Scholar 

  24. Quarto R, Campanile G, Cancedda R, Dozin B (1997) Modulation of commitment, proliferation, and differentiation of chondrogenic cells in defined culture medium. Endocrinology 138(11):4966–4976

    Article  PubMed  CAS  Google Scholar 

  25. Onishi T, Kinoshita S, Shintani S, Sobue S, Ooshima T (1999) Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch Oral Biol 44(4):361–371

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Mueller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, M.B., Blunk, T., Appel, B. et al. Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner. International Orthopaedics (SICOT) 37, 153–158 (2013). https://doi.org/10.1007/s00264-012-1726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1726-z

Keywords

Navigation