Skip to main content

Advertisement

Log in

In vivo tricalcium phosphate, bone morphogenetic protein and autologous bone marrow biomechanical enhancement in vertebral fractures in a porcine model

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Minimally invasive techniques that introduce cement and bone substitutes inside the fractured vertebral body are a new treatment line with clinically proven efficacy. However, mechanical behaviours between different fillers throughout fracture evolution is yet to be clarified, as many substances are available for introduction into the vertebral body fracture.

Methods

We comparatively studied biomechanical properties of tricalcium phosphate, tricalcium phosphate with bone morphogenetic protein (rhBMP-7) and autologous bone marrow aspirate with rhBMP-7 in vivo to determine what substance is optimal for repairing vertebral lesions in a porcine model. This biomechanical study was carried out with an Instron-type testing machine. Data registered were necessary strength to reach vertebral fracture [Newtons (N)], shortening (millimeters) of the vertebra, energy absorption until vertebral fracture (Joules) and vertebral unit stiffnesss.

Results

For statistical study, we used the SPSS 16 package at a significance level of α = 0.05. In the presentation of the results, mean, standard deviation of mean, median and interquartile range (IQR) were analysed. Mean and standard deviation (SD) of strength in newtons (N) for the vertebral fracture are 756 N (SD = 253) in group 1, 1,500 N (SD = 1598) in group 2 and 1,230 N (SD = 1,598) in group 3. Stiffnesss after fracture was 229 N (SD = 123) in group 1, 277 N (SD = 135) in group 2 and 404 N (SD = 325) in group 3.

Conclusions

The association of tricalcium phosphate and BMP-7 generates major vertebral resistance to external energy, the cause of such fractures. In such fractures, minor shortening occurs as soon as the vertebral body is fractured. Autologous bone marrow and BMP-7 provides increased biomechanical behavior, and the vertebral body is thus significantly strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Riggs BL, Melton LJ 3rd (1995) The worldwide problem of osteoporosis: insights affored by epidemiology. Bone 17:S505–S511

    Article  Google Scholar 

  2. Silverman SL (1992) The clinical consequences of vertebral compression fracture. Bone 13:S27–S31

    Article  PubMed  Google Scholar 

  3. Melton LJ 3rd, Kan SH, Frye MA et al (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129(5):1000–1011

    PubMed  Google Scholar 

  4. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures: a population based study in Rochester. J Bone Miner Res 7(2):221–227

    Article  CAS  PubMed  Google Scholar 

  5. Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285(17):127–132

    Google Scholar 

  6. Lyles KW, Gold DT, Shipp KM, Pieper CF, Martinez S, Mulhausen PL (1993) Association of osteoporotic compression fractures with impaired functional status. Am J Med 94:34–40

    Article  Google Scholar 

  7. Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V (2012) Osteoporotic vertebral fractures: current concepts of conservative care. Br Med Bull 102:171–189

    Article  PubMed  Google Scholar 

  8. Kim DH, Vaccaro AR (2006) Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J 6(5):479–487

    Article  PubMed  Google Scholar 

  9. Galibert P, Deramond H, Rosat P, Le Gars D (1987) Preliminary noTe on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurosurgery 33:166–168

    CAS  Google Scholar 

  10. Garfin S, Yuan HA, Reiley MA (2001) New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila Pa 1976) 26:1511–1515

    Article  CAS  Google Scholar 

  11. Dong R, Chen L, Tang T et al (2013) Pain reduction following vertebroplasty and kiphoplasty. Int Orthop 37(1):83–87

    Article  PubMed Central  PubMed  Google Scholar 

  12. McGirt MJ, Parker SL, Wolinsky JP, Witham TF, Bydon A, Gokaslan Z (2009) Vertebroplasty and kyphoplasty for the treatment of vertebral compression fractures: an evidenced-based review of the literature. Spine J 9(6):501–508

    Article  PubMed  Google Scholar 

  13. Han S, Wan S, Ning L, Tong Y, Zhang J, Fan S (2011) Percutaneous vertebroplasty versus balloon kiphoplasty for treatment of osteoporotic vertebral compression fracture: a meta-analisis of randomised and non-randomised controlled trials. Int Orthop 35(9):1349–1358

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hillmeyer J, Meeder PJ, Nöldge G et al (2004) Balloon kyphoplasty of vertebral compression fractures with a new calcium phosphate cement. Orthopade 33(1):31–39

    Article  Google Scholar 

  15. Lim TH, Brebach GT, Renner SM et al (2002) Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 27(12):1297–1302

    Article  PubMed  Google Scholar 

  16. Phillips F, Turner AS, Seim HB 3rd et al (2006) In vivo BMP-7 (OP-1) enhancement of osteoporotic vertebral bodies in an ovine model. Spine J 6(5):500–506

    Article  PubMed  Google Scholar 

  17. Pecina M, Giltaij LR, Vukicevic S (2001) Orthopaedic applications of osteogenic protein-1 (BMP-7). Int Orthop 25(4):203–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. White AP, Vaccaro AR, Hall JA et al (2007) Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int Orthop 31(6):735–741

    Article  PubMed Central  PubMed  Google Scholar 

  19. Cubitt J, McAndrew A (2010) Management of tibial non-union with tricalcium phosphate and BMP 7. BMJ Case Rep. doi:10.1136/bcr.02.2010.2777

    PubMed Central  PubMed  Google Scholar 

  20. Busuttil K, Ayoub A, McMahonb J et al (2012) Mandibular reconstruction in the rabbit using beta-tricalcium phosphate (b-TCP) scaffolding and recombinant bone morphogenetic protein 7(rhBMP-7) e Histological, radiographic and mechanical evaluations. J Craniomaxillofac Surg 40(8):e461–e469

    Article  Google Scholar 

  21. Giannoudis P, Dinopoulos H (2010) Autologous bone graft: when shall we add growth factors? Foot Ankle Clin 15(4):597–609

    Article  PubMed  Google Scholar 

  22. Kanakaris NK, Petsatodis G, Tagil M, Giannoudis PV (2009) Is there a role for bone morphogenetic proteins in osteoporotic fractures? Injury 40(Suppl 3):S21–S26

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Manrique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manrique, E., Chaparro, D., Cebrián, J.L. et al. In vivo tricalcium phosphate, bone morphogenetic protein and autologous bone marrow biomechanical enhancement in vertebral fractures in a porcine model. International Orthopaedics (SICOT) 38, 1993–1999 (2014). https://doi.org/10.1007/s00264-014-2377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2377-z

Keywords

Navigation