Skip to main content

Advertisement

Log in

Radiographic quantification of dynamic hip screw migration

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to propose a technique to quantify dynamic hip screw (DHS®) migration on serial anteroposterior (AP) radiographs by accounting for femoral rotation and flexion.

Methods

Femoral rotation and flexion were estimated using radiographic projections of the DHS® plate thickness and length, respectively. The method accuracy was evaluated using a synthetic femur fixed with a DHS® and positioned at pre-defined rotation and flexion settings. Standardised measurements of DHS® migration were trigonometrically adjusted for femoral rotation and flexion, and compared with unadjusted estimates in 34 patients.

Results

The mean difference between the estimated and true femoral rotation and flexion values was 1.3° (95 % CI 0.9–1.7°) and −3.0° (95 % CI – 4.2° to −1.9°), respectively. Adjusted measurements of DHS® migration were significantly larger than unadjusted measurements (p = 0.045).

Conclusion

The presented method allows quantification of DHS® migration with adequate bias correction due to femoral rotation and flexion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reginster JY, Gillet P, Gosset C (2001) Secular increase in the incidence of hip fractures in Belgium between 1984 and 1996: need for a concerted public health strategy. Bull World Health Organ 79:942–946

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Sanders KM, Nicholson GC, Ugoni AM, Pasco JA, Seeman E, Kotowicz MA (1999) Health burden of hip and other fractures in Australia beyond 2000. Projections based on the Geelong Osteoporosis Study. Med J Aust 170:467–470

    PubMed  CAS  Google Scholar 

  3. Ho M, Garau G, Walley G, Oliva F, Panni AS, Longo UG et al (2009) Minimally invasive dynamic hip screw for fixation of hip fractures. Int Orthop 33:555–560. doi:10.1007/s00264-008-0565-4

    Article  PubMed Central  PubMed  Google Scholar 

  4. Barrios C, Brostrom LA, Stark A, Walheim G (1993) Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma 7:438–442

    Article  PubMed  CAS  Google Scholar 

  5. Ahrengart L, Tornkvist H, Fornander P, Thorngren KG, Pasanen L, Wahlstrom P et al. (2002) A randomized study of the compression hip screw and Gamma nail in 426 fractures. Clin Orthop Relat Res 401:209–222

    Google Scholar 

  6. Brammar TJ, Kendrew J, Khan RJ, Parker MJ (2005) Reverse obliquity and transverse fractures of the trochanteric region of the femur; a review of 101 cases. Injury 36:851–857

    Article  PubMed  Google Scholar 

  7. Hohendorff B, Meyer P, Menezes D, Meier L, Elke R (2005) [Treatment results and complications after PFN osteosynthesis]. Unfallchirurg 108:938, 940, 941–946

    Google Scholar 

  8. Liu M, Yang Z, Pei F, Huang F, Chen S, Xiang Z (2010) A meta-analysis of the Gamma nail and dynamic hip screw in treating peritrochanteric fractures. Int Orthop 34:323–328. doi:10.1007/s00264-009-0783-4

    Article  PubMed Central  PubMed  Google Scholar 

  9. Saarenpaa I, Heikkinen T, Jalovaara P (2007) Treatment of subtrochanteric fractures. A comparison of the Gamma nail and the dynamic hip screw: short-term outcome in 58 patients. Int Orthop 31:65–70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Andruszkow H, Frink M, Fromke C, Matityahu A, Zeckey C, Mommsen P et al (2012) Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. Int Orthop 36(11):2347–2354. doi:10.1007/s00264-012-1636-0

    Article  PubMed Central  PubMed  Google Scholar 

  11. Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG (1990) Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br 72:26–31

    PubMed  CAS  Google Scholar 

  12. Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1276. doi:10.1007/s00264-009-0866-2

    Article  PubMed Central  PubMed  Google Scholar 

  13. Lee YS, Huang HL, Lo TY, Huang CR (2007) Dynamic hip screw in the treatment of intertrochanteric fractures: a comparison of two fixation methods. Int Orthop 31:683–688

    Article  PubMed Central  PubMed  Google Scholar 

  14. Saarenpaa I, Heikkinen T, Ristiniemi J, Hyvonen P, Leppilahti J, Jalovaara P (2009) Functional comparison of the dynamic hip screw and the Gamma locking nail in trochanteric hip fractures: a matched-pair study of 268 patients. Int Orthop 33:255–260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Sheng WC, Li JZ, Chen SH, Zhong SZ (2009) A new technique for lag screw placement in the dynamic hip screw fixation of intertrochanteric fractures: decreasing radiation time dramatically. Int Orthop 33:537–542. doi:10.1007/s00264-008-0517-z

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kumar AJ, Parmar VN, Kolpattil S, Humad S, Williams SC, Harper WM (2007) Significance of hip rotation on measurement of ‘tip apex distance’ during fixation of extracapsular proximal femoral fractures. Injury 38:792–796

    Article  PubMed  Google Scholar 

  17. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  PubMed  CAS  Google Scholar 

  18. Wilson JD, Eardley W, Odak S, Jennings A (2011) To what degree is digital imaging reliable? Validation of femoral neck shaft angle measurement in the era of picture archiving and communication systems. Br J Radiol 84:375–379. doi:10.1259/bjr/29690721

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Davids JR, Marshall AD, Blocker ER, Frick SL, Blackhurst DW, Skewes E (2003) Femoral anteversion in children with cerebral palsy. Assessment with two and three-dimensional computed tomography scans. J Bone Joint Surg Am 85-A:481–488

    PubMed  Google Scholar 

  20. Gardner MJ, Bhandari M, Lawrence BD, Helfet DL, Lorich DG (2005) Treatment of intertrochanteric hip fractures with the AO trochanteric fixation nail. Orthopedics 28:117–122

    PubMed  Google Scholar 

  21. Gardner MJ, Briggs SM, Kopjar B, Helfet DL, Lorich DG (2007) Radiographic outcomes of intertrochanteric hip fractures treated with the trochanteric fixation nail. Injury 38:1189–1196

    Article  PubMed  Google Scholar 

  22. Watanabe Y, Minami G, Takeshita H, Fujii T, Takai S, Hirasawa Y (2002) Migration of the lag screw within the femoral head: a comparison of the intramedullary hip screw and the Gamma Asia-Pacific nail. J Orthop Trauma 16:104–107

    Article  PubMed  Google Scholar 

  23. Raudaschl P, Fritscher K, Roth T, Kammerlander C, Schubert R (2010) Analysis of the micro-migration of sliding hip screws by using point-based registration. Int J Comput Assist Radiol Surg 5:455–460. doi:10.1007/s11548-010-0498-4

    Article  PubMed  Google Scholar 

  24. Parker MJ, Handoll HH (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev 9:CD000093. doi: 10.1002/14651858

Download references

Acknowledgments

We wish to thank Alexander Brunner, MD for providing cases which were used in the clinical evaluation part of this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Andreas Müller.

Additional information

Laurent Audigé and Flurin Cagienard equally contributed to this work and share first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 701 kb)

ESM 2

(XLSX 35 kb)

Appendix : Detailed presentation of formulae to estimate femoral rotation angle

Appendix : Detailed presentation of formulae to estimate femoral rotation angle

The relationship between the projected thickness of the DHS® plate (Tproj) and the femoral rotation angle (α) is described by two sets of formulae (Fig. 5):

Fig. 5
figure 5

Representation of DHS® plate projection (Tproj) with and without rotation. Abbreviations: T = true plate thickness (T1 = 7.23 mm, T2 = 5.8 mm); W = true plate width = 19 mm; C = radius of plate curvature (30.8 mm); α = rotation angle (defined as 90 –α1 – α2); φ = threshold rotation angle, i.e., the value of rotation above which the DHS® plate curvature influences the relationship between Tproj and α. T3 and W3 define the thickness and width, respectively, of a fictive plate defined according to the rotation angle α

Above a femoral rotation threshold angle of 18°, the DHS® plate curvature radius (C) does not influence the relationship between Tproj and α. Femoral rotation is then calculated as follows (Fig. 5b) :

$$ \mathrm{Femoral}\ \mathrm{rotation}\ \alpha\ \left(\mathrm{degree}\right)=\kern0.5em 90\kern0.5em -\kern0.5em {\alpha}_1\kern0.5em -\kern0.75em {\alpha}_2 $$
(6)
$$ {\alpha}_1\left(\mathrm{degree}\right)= \arctan \left(\frac{{\mathrm{T}}_2}{\mathrm{W}}\right)\times \frac{180}{\pi } $$
(7)
$$ {\alpha}_2\left(\mathrm{degree}\right)=\mathrm{arcos}\left(\frac{{\mathrm{T}}_{\mathrm{proj}}}{\sqrt{{\mathrm{T}}_2{}^2+{\mathrm{W}}^2}}\right)\times \frac{180}{\pi } $$
(8)

For rotation angles ranging from 0 to 18°, the projection of the plate curvature must be considered. The formula presented above can be applied on a “fictive plate” defined by its width, W3 and thickness, T3 in relation to the rotation angle as follows (Fig. 5c):

$$ \mathrm{Rotation}\ \mathrm{angle}\ \alpha\ \left(\mathrm{degree}\right)=90-\left( \arctan \frac{{\mathrm{T}}_3}{{\mathrm{W}}_3}+ \arccos\ \frac{{\mathrm{T}}_{\mathrm{proj}}}{\sqrt{{\mathrm{T}}_3{}^2+{\mathrm{W}}_3{}^2}}\right)\times \frac{180}{\pi } $$
(9)
$$ {\mathrm{W}}_3=\raisebox{1ex}{$\mathrm{W}$}\!\left/ \!\raisebox{-1ex}{$2$}\right.+\mathrm{C}\times \sin \propto $$
(10)
$$ {\mathrm{T}}_3={\mathrm{T}}_1-\mathrm{C}\ \mathrm{x}\left(1- \cos \propto \right) $$
(11)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audigé, L., Cagienard, F., Sprecher, C.M. et al. Radiographic quantification of dynamic hip screw migration. International Orthopaedics (SICOT) 38, 839–845 (2014). https://doi.org/10.1007/s00264-013-2146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-2146-4

Keywords

Navigation