Skip to main content

Advertisement

Log in

Long-term survival of the uncemented Balgrist total hip replacement cup

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the long-term clinical and radiographic outcomes of the Balgrist total hip replacement cup.

Methods

We report the results of a retrospective review of 195 total hip prostheses with Balgrist cup implanted in 178 patients. There were 59 men and 119 women with a mean age at surgery of 52.3 years (range, 19–72). Cox regression was used to determine the influence of independent variables on the survivorship of the prosthesis.

Results

There were 117 (66 %) of 178 patients, and 131 (67 %) of 195 hips available for assessment at a mean follow-up of 17.4 years. A total of 21 patients (22 hips) were lost from follow-up (12 %). A total of 25 patients (27 hips) required some type of re-operation during the follow-up period. Eight of 27 re-operations (30 %) were directly caused by the Balgrist cup failure due to fatigue fracture of the metallic shell (n = 5; 19 %), polyethylene wear (n = 2; 7 %) and aseptic loosening (n = 1; 4 %). The mean polyethylene wear rate was 0.068 mm/year (range, 0.008–0.230; SD = 0.043). The risk of re-operation for any reason was decreased with dysplastic hip as a primary diagnosis (hazard ratio; HR = 0.250; 95 % CI 0.086–0.725) and with greater age at the time of surgery (HR = 0.923; 95 % CI 0.880–0.969). The 19-year survivorship with re-operation for any reason was 75.6 % (95 % CI 67.0–84.2). The 19-year survivorship with re-operation for the Balgrist cup failure was 90.5 % (95 % CI 83.4–97.6).

Conclusions

The Balgrist cup continues to provide excellent clinical and radiological outcomes. This is associated at least in part with a low polyethylene wear rate. The main reason for the Balgrist cup failure is fatigue fracture of the metallic shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Franklin PD, Allison JJ, Ayers DC (2012) Beyond joint implant registries: a patient-centered research consortium for comparative effectiveness in total joint replacement. JAMA 308:1217–1218

    Article  PubMed  CAS  Google Scholar 

  2. Beswick AD, Wylde V, Gooberman-Hill R et al (2012) What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open 2:e000435

    Article  PubMed  Google Scholar 

  3. Clement ND, Biant LC, Breusch SJ (2012) Total hip arthroplasty: to cement or not to cement the acetabular socket? A critical review of the literature. Arch Orthop Trauma Surg 132:411–427

    Article  PubMed  CAS  Google Scholar 

  4. Gallo J, Langova K, Havranek V et al (2008) Poor survival of ABG I hip prosthesis in younger patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152:163–168

    Article  PubMed  Google Scholar 

  5. Hailer NP, Garellick G, Karrholm J (2010) Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta Orthop 81:34–41

    Article  PubMed  Google Scholar 

  6. Makela KT, Eskelinen A, Pulkkinen P et al (2011) Results of 3,668 primary total hip replacements for primary osteoarthritis in patients under the age of 55 years. Acta Orthop 82:521–529

    Article  PubMed  Google Scholar 

  7. Morshed S, Bozic KJ, Ries MD et al (2007) Comparison of cemented and uncemented fixation in total hip replacement: a meta-analysis. Acta Orthop 78:315–326

    Article  PubMed  Google Scholar 

  8. Wroblewski BM, Siney PD, Fleming PA (2009) Charnley low-frictional torque arthroplasty: follow-up for 30 to 40 years. J Bone Joint Surg Br 91:447–450

    Article  PubMed  CAS  Google Scholar 

  9. Van Der Veen HC, Van Jonbergen HP, Poolman RW et al (2013) Is there evidence for accelerated polyethylene wear in uncemented compared to cemented acetabular components? A systematic review of the literature. Int Orthop 37:9–14

    Article  PubMed  Google Scholar 

  10. Harris WH (2009) The first 50 years of total hip arthroplasty: lessons learned. Clin Orthop Relat Res 467:28–31

    Article  PubMed  Google Scholar 

  11. Pokorny D, Slouf M, Fulin P (2012) Current knowledge on the effect of technology and sterilization on the structure, properties and longevity of UHMWPE in total joint replacement. Acta Chir Orthop Traumatol Cech 79:213–221

    PubMed  CAS  Google Scholar 

  12. Rimnac C, Pruitt L, Implant Wear Symposium Engineering Work Group (2008) How do material properties influence wear and fracture mechanisms? J Am Acad Orthop Surg 16(Suppl 1):S94–S100

    PubMed  Google Scholar 

  13. Santavirta S, Goodman SB (2005) Total hip replacement: a successful interaction of biology, mechanics, and materials science. Clin Orthop Relat Res 430:2

    Article  PubMed  Google Scholar 

  14. Jacob HA, Hilfiker B (1990) The self-locking Balgrist hip socket for cement-free fixation—history of its development and clinical experience to date. Z Orthop Ihre Grenzgeb 128:254–261

    Article  PubMed  CAS  Google Scholar 

  15. Echtler B, Jacob HA, Houweling M et al (1999) 8-year survivorship analysis and subjective results of 687 primary Balgrist hip sockets. Acta Orthop Belg 65:346–356

    PubMed  CAS  Google Scholar 

  16. Ishaque BA, Basad E, Gils J et al (2009) Long-term results of the cementless conical Balgrist expansion cup—comparison analysis to the Zweymuller-Alloclassic screw cup. Z Orthop Unfall 147:707–715

    Article  PubMed  CAS  Google Scholar 

  17. Pakvis D, Van Hellemondt G, De Visser E et al (2011) Is there evidence for a superior method of socket fixation in hip arthroplasty? A systematic review. Int Orthop 35:1109–1118

    Article  PubMed  Google Scholar 

  18. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–755

    PubMed  CAS  Google Scholar 

  19. Zahiri CA, Schmalzried TP, Szuszczewicz ES et al (1998) Assessing activity in joint replacement patients. J Arthroplast 13:890–895

    Article  CAS  Google Scholar 

  20. Charnley J (1972) The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Joint Surg Br 54:61–76

    PubMed  CAS  Google Scholar 

  21. Pagnano W, Hanssen AD, Lewallen DG et al (1996) The effect of superior placement of the acetabular component on the rate of loosening after total hip arthroplasty. J Bone Joint Surg Am 78:1004–1014

    PubMed  CAS  Google Scholar 

  22. Engh CA, Massin P, Suthers KE (1990) Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin Orthop Relat Res 257:107–128

    PubMed  Google Scholar 

  23. Massin P, Schmidt L, Engh CA (1989) Evaluation of cementless acetabular component migration. An experimental study. J Arthroplasty 4:245–251

    Article  PubMed  CAS  Google Scholar 

  24. Delee JG, Charnley J (1976) Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res 121:20–32

    PubMed  Google Scholar 

  25. Gruen TA, Mcneice GM, Amstutz HC (1979) "Modes of failure" of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    PubMed  Google Scholar 

  26. Gallo J, Havranek V, Zapletalova J (2010) Risk factors for accelerated polyethylene wear and osteolysis in ABG I total hip arthroplasty. Int Orthop 34:19–26

    Article  PubMed  Google Scholar 

  27. Dorr LD, Wan Z (1995) Ten years of experience with porous acetabular components for revision surgery. Clin Orthop Relat Res 319:191–200

    PubMed  Google Scholar 

  28. Rowden NJ, Harrison JA, Graves SE et al (2012) Loss to follow-up after arthroplasty: a new use for registry data. J Bone Joint Surg Br 94:493–496

    PubMed  CAS  Google Scholar 

  29. Lachiewicz PF, Soileau ES (2012) Second-generation modular acetabular components provide fixation at 10 to 16 years. Clin Orthop Relat Res 470:366–372

    Article  PubMed  Google Scholar 

  30. Suckel A, Geiger F, Kinzl L et al (2009) Long-term results for the uncemented Zweymuller/Alloclassic hip endoprosthesis. A 15-year minimum follow-up of 320 hip operations. J Arthroplasty 24:846–853

    Article  PubMed  Google Scholar 

  31. Terre RA (2010) Estimated survival probability of the Spotorno total hip arthroplasty after a 15- to 21-year follow-up: one surgeon’s results. Hip Int 20(Suppl 7):70–78

    PubMed  Google Scholar 

  32. Laupacis A, Bourne R, Rorabeck C et al (2002) Comparison of total hip arthroplasty performed with and without cement: a randomized trial. J Bone Joint Surg Am 84:1823–1828

    PubMed  Google Scholar 

  33. Rorabeck CH, Bourne RB, Laupacis A et al (1994) A double-blind study of 250 cases comparing cemented with cementless total hip arthroplasty. Cost-effectiveness and its impact on health-related quality of life. Clin Orthop Relat Res 298:156–164

    PubMed  Google Scholar 

  34. Corten K, Bourne RB, Charron KD et al (2011) What works best, a cemented or cementless primary total hip arthroplasty? Minimum 17-year followup of a randomized controlled trial. Clin Orthop Relat Res 469:209–217

    Article  PubMed  Google Scholar 

  35. Martín-Guinea J, Álvarez-Gonzáles P, Nieva-Navarro F (2004) Analysis of 10-year survival rates for 100 cementless Balgrist cups in primary hip prostheses. J Bone Joint Surg Br 86:141

    Google Scholar 

  36. Rozkydal Z, Janicek P, Tomas T et al (2009) Long-term results of the CLS acetabular cup in primary total hip replacement. Acta Chir Orthop Traumatol Cech 76:90–97

    PubMed  CAS  Google Scholar 

  37. Dottl C, Steinhauser E, Koch U et al (2006) Fractures of cementless thin-walled cups. J Arthroplasty 21:144–147

    Article  PubMed  Google Scholar 

  38. Gallo J, Goodman SB, Konttinen YT et al (2013) Particle disease: Biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun 19:213–224

    Article  PubMed  CAS  Google Scholar 

  39. Gallo J, Goodman SB, Lostak J et al (2012) Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156:204–212

    Article  PubMed  Google Scholar 

  40. Shetty V, Shitole B, Shetty G et al (2011) Optimal bearing surfaces for total hip replacement in the young patient: a meta-analysis. Int Orthop 35:1281–1287

    Article  PubMed  Google Scholar 

  41. Battenberg AK, Hopkins JS, Kupiec AD et al (2013) The 2012 Frank Stinchfield Award: Decreasing patient activity with aging: implications for crosslinked polyethylene wear. Clin Orthop Relat Res 471:386–392

    Article  PubMed  Google Scholar 

  42. Kinkel S, Wollmerstedt N, Kleinhans JA et al (2009) Patient activity after total hip arthroplasty declines with advancing age. Clin Orthop Relat Res 467:2053–2058

    Article  PubMed  Google Scholar 

  43. Schmalzried TP, Shepherd EF, Dorey FJ et al (2000) The John Charnley Award. Wear is a function of use, not time. Clin Orthop Relat Res 381:36–46

    Article  PubMed  Google Scholar 

  44. Schmalzried TP, Szuszczewicz ES, Northfield MR et al (1998) Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am 80:54–59

    Article  PubMed  CAS  Google Scholar 

  45. Romano CL, Frigo C, Randelli G et al (1996) Analysis of the gait of adults who had residua of congenital dysplasia of the hip. J Bone Joint Surg Am 78:1468–1479

    PubMed  CAS  Google Scholar 

  46. Gould VC, Blom AW, Wylde V (2012) Long-term patient-reported outcomes after total hip replacement: comparison to the general population. Hip Int 22:160–165

    Article  PubMed  Google Scholar 

  47. Roder C, Staub LP, Eichler P et al (2006) Avoiding misclassification bias with the traditional Charnley classification: rationale for a fourth Charnley class BB. J Orthop Res 24:1803–1808

    Article  PubMed  CAS  Google Scholar 

  48. Sheffler LC, Yoo B, Bhandari M et al (2013) Observational studies in orthopaedic surgery: the STROBE statement as a tool for transparent reporting. J Bone Joint Surg Am 95:e112–141

    Article  Google Scholar 

  49. Joshi AB, Gill GS, Smith PL (2003) Outcome in patients lost to follow-up. J Arthroplasty 18:149–153

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work on the study was supported by IGA Ministry of Health Czech Republic (IGA MZ CR NT/11049 and NT/14267). The authors thank Prof. Stuart B. Goodman from the Stanford Medical School for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Gallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, J., Lostak, J. & Langova, K. Long-term survival of the uncemented Balgrist total hip replacement cup. International Orthopaedics (SICOT) 37, 1449–1456 (2013). https://doi.org/10.1007/s00264-013-1946-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-1946-x

Keywords

Navigation