Skip to main content

Advertisement

Log in

Recombined bone xenografts enhance tendon graft osteointegration of anterior cruciate ligament reconstruction

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The objective of the study was to discover whether recombined bone xenograft (RBX), a porous solid material, could augment healing of the tendon-to-bone interface after anterior cruciate ligament (ACL) reconstruction. ACL reconstruction was performed bilaterally in 25 skeletally mature rabbits using long digital extensor tendon grafts. RBX was implanted into the treated knee, with the contralateral knee serving as control. Three rabbits were killed at postoperative weeks two, six and 12 for routine histology. The remaining 16 rabbits were killed at weeks six and 12, and their femur-graft-tibia complexes were harvested for mechanical testing. The treatment and control groups produced different histological findings at the interface between the tendon and bone. In the treatment group, large areas of chondrocyte-like cells were noted around the tendon-bone interface two weeks after the operation. At six weeks, more abundant bone formation was observed around the tendon. At 12 weeks, an immature neoenthesis structure was seen. In biomechanical evaluation six and 12 weeks after the operation, the ultimate strength of tendon in the bone tunnel was significantly higher in the treatment group than in the control group. RBX can augment the osteointegration of tendon to bone after ACL reconstruction.

Résumé

L’objectif de cette étude est d’évaluer l’intérêt d’un matériel solide et poreux du type xénogreffe osseuse recombinée. Cette greffe osseuse recombinée (RBX), peut-elle augmenter les chances de consolidation au niveau de l’interface tendon-os après reconstruction du ligament croisé antérieur (ACL). Matériel et méthode: une reconstruction du ligament croisé antérieur a été réalisée de façon bilatérale sur 25 lapins « squelettiques » en utilisant une greffe du tendon du long extenseur. RBX a été implanté dans les genoux traités, le genou contro latéral servant de contrôle. Trois lapins ont été sacrifiés à 2,6 et 12 semaines avec un examen histologique de routine, les 16 lapins restant ont été sacrifiés à 6 et 12 semaines, le complexe osseux fémoro tibial ayant été testé mécaniquement. Résultat, le groupe contrôle non traité montre une différence histologique au niveau de l’interface entre le tendon et l’os. Dans le groupe traité par RBX, de larges plages cellulaires de chondrocytes-like ont été repérés autour de l’interface tendon-os 2 semaines après l’opération. 12 semaines après, des formations plus importantes ont été observées autour du tendon de même qu’une néofixation de type immature. L’évaluation bio mécanique a montré que 12 semaines après l’opération l’insertion tendineuse au niveau du tunnel osseux est beaucoup plus solide dans le groupe des lapins traités que dans le groupe contrôle. En conclusion le RBX peut augmenter l’ostéo intégration osseuse de la jonction tendineuse dans les réparations du ligament croisé antérieur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

RBX:

Recombined bone xenograft

QSTG:

Quadrupled semitendinosus and gracilis tendons

BPTB:

Bone-patella tendon-bone

SEM:

Scanning electron microscopy

BMPs:

Bone morphogenetic proteins

H&E:

Hematoxylin and eosin

SD:

Standard deviation

References

  1. Anderson K, Seneviratne AM, Izawa K et al (2001) Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med 29:689–698

    CAS  PubMed  Google Scholar 

  2. Forward AD, Cowan RJ (1963) Tendon suture to bone: an experimental investigation in rabbits. J Bone Joint Surg Am 45:807–823

    Google Scholar 

  3. Freedman KB, D’Amato MJ, Nedeff DD et al (2003) Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon grafts. Am J Sports Med 31:2–11

    PubMed  Google Scholar 

  4. Hoffmann A, Gross G (2007) Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. Int Orthop 31:791–797

    Article  PubMed  Google Scholar 

  5. Hu YY (1993) Experimental studies on reconstituted bone xenograft and its clinical application (in Chinese). Zhonghua Wai Ke Za Zhi 31:709–713

    CAS  PubMed  Google Scholar 

  6. Kyung HS, Kim SY, Oh CW et al (2003) Tendon-to-bone tunnel healing in a rabbit model: the effect of periosteum augmentation at the tendon-to-bone interface. Knee Surg Sports Traumatol Arthrosc 11:9–15

    PubMed  Google Scholar 

  7. Liu SH, Kabo JM, Osti L (1995) Biomechanics of two types of bone-tendon-bone graft for ACL reconstruction. J Bone Joint Surg Br 77:232–235

    CAS  PubMed  Google Scholar 

  8. Liu SH, Panossian V, al-Shaikh R et al (1997) Morphology and matrix composition during early tendon to bone healing. Clin Orthop 339:253–260

    Article  PubMed  Google Scholar 

  9. Wei L, Yunyu H, Yupu L (1991) Development and biological activity analysis of reconstituted bone xenograft. Natl Med J China 71:378–380

    Google Scholar 

  10. Bi L, Hu Y, Fan H (2007) Treatment of contaminated bone defects with clindamycin-reconstituted bone xenograft-composites. J Biomed Mater Res B Appl Biomater 82:418–427

    PubMed  Google Scholar 

  11. Ma CB, Kawamura S, Deng XH et al (2007) Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am J Sports Med 35:597–604

    Article  PubMed  Google Scholar 

  12. Matthews SJ (2005) Biological activity of bone morphogenetic proteins (BMP’s). Injury 36(Suppl 3):S34–S37

    Article  PubMed  Google Scholar 

  13. Mihelic R, Pecina M, Jelic M et al (2004) Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med 32:1619–1625

    Article  PubMed  Google Scholar 

  14. Ouyang HW, Goh JC, Lee EH (2004) Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med 32:321–327

    Article  PubMed  Google Scholar 

  15. Park MJ, Lee MC, Seong SC (2001) A comparative study of the healing of tendon autograft and tendon-bone autograft using patellar tendon in rabbits. Int Orthop 25:35–39

    Article  CAS  PubMed  Google Scholar 

  16. Pecina M, Giltaij LR, Vukicevic S (2001) Orthopaedic applications of osteogenic protein-1 (BMP-7). Int Orthop 25:203–208

    Article  CAS  PubMed  Google Scholar 

  17. Robertson WJ, Hatch JD, Rodeo SA (2007) Evaluation of tendon graft fixation using alpha-BSM calcium phosphate cement. Arthroscopy 23:1087–1092

    PubMed  Google Scholar 

  18. Rodeo SA, Arnoczky SP, Torzilli PA et al (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75:1795–1803

    CAS  PubMed  Google Scholar 

  19. Rodeo SA, Suzuki K, Deng XH et al (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27:476–488

    CAS  PubMed  Google Scholar 

  20. Shaieb MD, Singer DI, Grimes J et al (2000) Evaluation of tendon-to-bone reattachment: a rabbit model. Am J Orthop 29:537–542

    CAS  PubMed  Google Scholar 

  21. Spalazzi JP, Dagher E, Doty SB et al (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86:1–12

    PubMed  Google Scholar 

  22. Tien YC, Chih TT, Lin JH et al (2004) Augmentation of tendon-bone healing by the use of calcium-phosphate cement. J Bone Joint Surg Br 86:1072–1076

    Article  CAS  PubMed  Google Scholar 

  23. Tomita F, Yasuda K, Mikami S et al (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17:461–476

    CAS  PubMed  Google Scholar 

  24. Urist MR, Mikulski A, Lietze A (1979) Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci USA 76:1828–1832

    Article  CAS  PubMed  Google Scholar 

  25. Wang CJ, Wang FS, Yang KD et al (2005) The effect of shock wave treatment at the tendon-bone interface-an histomorphological and biomechanical study in rabbits. J Orthop Res 23:274–280

    Article  PubMed  Google Scholar 

  26. Yamakado K, Kitaoka K, Yamada H et al (2002) The influence of mechanical stress on graft healing in a bone tunnel. Arthroscopy 18:82–90

    Article  PubMed  Google Scholar 

  27. Yamazaki S, Yasuda K, Tomita F et al (2005) The effect of transforming growth factor-beta1 on intraosseous healing of flexor tendon autograft replacement of anterior cruciate ligament in dogs. Arthroscopy 21:1034–1041

    PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyu Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, W., Hu, Y., Wei, Y. et al. Recombined bone xenografts enhance tendon graft osteointegration of anterior cruciate ligament reconstruction. International Orthopaedics (SICOT) 33, 1761–1768 (2009). https://doi.org/10.1007/s00264-008-0715-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-008-0715-8

Keywords

Navigation