Skip to main content

Advertisement

Log in

Comprehensive analysis of scRNA-Seq and bulk RNA-Seq data reveals dynamic changes in tumor-associated neutrophils in the tumor microenvironment of hepatocellular carcinoma and leads to the establishment of a neutrophil-related prognostic model

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Analysis of hepatocellular carcinoma (HCC) single-cell sequencing data was conducted to explore the role of tumor-associated neutrophils in the tumor microenvironment.

Methods

Analysis of single-cell sequencing data from 12 HCC tumor cores and five HCC paracancerous tissues identified cellular subpopulations and cellular marker genes. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were used to establish and validate prognostic models. xCELL, TIMER, QUANTISEQ, CIBERSORT, and CIBERSORT-abs analyses were performed to explore immune cell infiltration. Finally, the pattern of tumor-associated neutrophil roles in tumor microenvironmental components was explored.

Results

A total of 271 marker genes for tumor-associated neutrophils were identified based on single-cell sequencing data. Prognostic models incorporating eight genes were established based on TCGA data. Immune cell infiltration differed between the high- and low-risk groups. The low-risk group benefited more from immunotherapy. Single-cell analysis indicated that tumor-associated neutrophils were able to influence macrophage, NK cell, and T-cell functions through the IL16, IFN-II, and SPP1 signaling pathways.

Conclusion

Tumor-associated neutrophils regulate immune functions by influencing macrophages and NK cells. Models incorporating tumor-associated neutrophil-related genes can be used to predict patient prognosis and immunotherapy responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study.

Abbreviations

GEO:

Gene expression omnibus

GSEA:

Gene set enrichment analysis

HCC:

Hepatocellular carcinoma

KEGG:

Kyoto encyclopedia of genes and genomes

LASSO:

Least absolute shrinkage and selection operator

RT-qPCR:

Real-time quantitative PCR

ROC:

Receiver operating characteristic

ssGSEA:

Single-sample GSEA

TCGA:

The cancer genome atlas program

UMAP:

Uniform manifold approximation and projection

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. Huang DQ, Singal AG, Kono Y, Tan DJH, El-Serag HB, Loomba R (2022) Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab 34(7):969–77.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Z, Jiang Y, Yuan H, Fang Q, Cai N, Suo C et al (2019) The trends in incidence of primary liver cancer caused by specific etiologies: results from the global burden of disease study 2016 and implications for liver cancer prevention. J Hepatol 70(4):674–683

    Article  PubMed  Google Scholar 

  4. Liu CY, Chen KF, Chen PJ (2015) Treatment of liver cancer. Cold Spring Harb Perspect Med 5(9):a021535

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grady WM, Yu M, Markowitz SD (2021) Epigenetic alterations in the gastrointestinal tract: current and emerging use for biomarkers of cancer. Gastroenterology 160(3):690–709

    Article  CAS  PubMed  Google Scholar 

  6. Chowdhury MMH, Salazar CJJ, Nurunnabi M (2021) Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomaterials science 9(14):4821–4842

    Article  CAS  PubMed  Google Scholar 

  7. Zhao C, Liu S, Gao F, Zou Y, Ren Z, Yu Z (2022) The role of tumor microenvironment reprogramming in primary liver cancer chemotherapy resistance. Front Oncol 12:1008902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G et al (2020) Tumor microenvironment in primary liver tumors: a challenging role of natural killer cells. World J Gastroenterol 26(33):4900–4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang QY, Ho DW, Tsui YM, Ng IO (2022) Single-cell transcriptomics of liver cancer: hype or insights? Cell Mol Gastroenterol Hepatol 14(3):513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kotsiliti E, Leone V, Schuehle S, Govaere O, Li H, Wolf MJ et al (2023) Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J Hepatol 79(2):296–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qin R, Zhao H, He Q, Li F, Li Y, Zhao H (2022) Advances in single-cell sequencing technology in the field of hepatocellular carcinoma. Front Genet 13:996890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma L, Heinrich S, Wang L, Keggenhoff FL, Khatib S, Forgues M et al (2022) Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer. Nat Commun 13(1):7533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao N, Dang H, Ma L, Martin SP, Forgues M, Ylaya K et al (2021) Intratumoral γδ T-cell infiltrates, chemokine (C-C Motif) ligand 4/chemokine (C-C Motif) ligand 5 protein expression and survival in patients with hepatocellular carcinoma. Hepatology (Baltimore, MD) 73(3):1045–1060

    Article  CAS  PubMed  Google Scholar 

  14. Scheiner B, Pinato DJ (2023) Tumor-infiltrating neutrophils: gatekeepers in liver cancer immune control. Gastroenterology 164(7):1338–1339

    Article  CAS  PubMed  Google Scholar 

  15. Wu F, Fan J, He Y, Xiong A, Yu J, Li Y et al (2021) Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun 12(1):2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H et al (2022) Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612(7938):141–147

    Article  CAS  PubMed  Google Scholar 

  17. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet (London, England) 391(10127):1301–1314

    Article  PubMed  Google Scholar 

  18. Yang JD, Heimbach JK (2020) New advances in the diagnosis and management of hepatocellular carcinoma. BMJ (Clinical Research Ed) 371:m3544

    PubMed  Google Scholar 

  19. Bruix J, Reig M, Sherman M (2016) Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 150(4):835–853

    Article  PubMed  Google Scholar 

  20. Oura K, Morishita A, Tani J, Masaki T (2021) Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int J Mol Sci 22(11):5801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Hassan W, Jabeen Q, Khan GJ, Iqbal F (2018) Interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine 103:150–159

    Article  CAS  PubMed  Google Scholar 

  22. Giese MA, Hind LE, Huttenlocher A (2019) Neutrophil plasticity in the tumor microenvironment. Blood 133(20):2159–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng MSF, Tan L, Wang Q, Mackay CR, Ng LG (2021) Neutrophils in cancer-unresolved questions. Sci China Life Sci 64(11):1829–1841

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Zhang W, Yuan X, Fu M, Qian H, Xu W (2016) Neutrophils in cancer development and progression: roles, mechanisms, and implications (Review). Int J Oncol 49(3):857–867

    Article  CAS  PubMed  Google Scholar 

  25. Chen H, Zhou XH, Li JR, Zheng TH, Yao FB, Gao B et al (2021) Neutrophils: driving inflammation during the development of hepatocellular carcinoma. Cancer Lett 522:22–31

    Article  CAS  PubMed  Google Scholar 

  26. Geh D, Leslie J, Rumney R, Reeves HL, Bird TG, Mann DA (2022) Neutrophils as potential therapeutic targets in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 19(4):257–273

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Wang Z, Ding Y, Qin Y (2023) Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 14:1133308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li XY, Shen Y, Zhang L, Guo X, Wu J (2022) Understanding initiation and progression of hepatocellular carcinoma through single cell sequencing. Biochim Biophys Acta 1877(3):188720

    CAS  Google Scholar 

  29. Arvanitakis K, Mitroulis I, Germanidis G (2021) Tumor-associated neutrophils in hepatocellular carcinoma pathogenesis, prognosis, and therapy. Cancers 13(12):2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu L, Zhang R, Deng J, Dai X, Zhu X, Fu Q et al (2022) Construction of TME and Identification of crosstalk between malignant cells and macrophages by SPP1 in hepatocellular carcinoma. Cancer Immunol Immunother : CII 71(1):121–136

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S et al (2023) Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol 78(4):770–782

    Article  CAS  PubMed  Google Scholar 

  32. Hu J, Zhang L, Xia H, Yan Y, Zhu X, Sun F et al (2023) Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Medicine 15(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eun JW, Yoon JH, Ahn HR, Kim S, Kim YB, Lim SB et al (2023) Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun (London, England) 43(4):455–479

    Article  Google Scholar 

  34. Hu J, Yang L, Peng X, Mao M, Liu X, Song J et al (2022) ALDH2 hampers immune escape in liver hepatocellular carcinoma through ROS/Nrf2-mediated autophagy. Inflammation 45(6):2309–2324

    Article  CAS  PubMed  Google Scholar 

  35. Zhang H, Fu L (2021) The role of ALDH2 in tumorigenesis and tumor progression: targeting ALDH2 as a potential cancer treatment. Acta pharmaceutica Sinica B 11(6):1400–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Su Y, Xue C, Gu X, Wang W, Sun Y, Zhang R et al (2023) Identification of a novel signature based on macrophage-related marker genes to predict prognosis and immunotherapeutic effects in hepatocellular carcinoma. Front Oncol 13:1176572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tao Z, Huang J, Li J. (2023) Comprehensive intratumoral heterogeneity landscaping of liver hepatocellular carcinoma and discerning of APLP2 in cancer progression. Environ Toxicol

  38. Marengo A, Rosso C, Bugianesi E (2016) Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 67:103–117

    Article  CAS  PubMed  Google Scholar 

  39. Tang J, Yan Z, Feng Q, Yu L, Wang H (2021) The roles of neutrophils in the pathogenesis of liver diseases. Front Immunol 12:625472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Huang H, Sze KM, Wang J, Tian L, Lu J et al (2023) S100A10 promotes HCC development and progression via transfer in extracellular vesicles and regulating their protein cargos. Gut 72(7):1370–1384

    Article  CAS  PubMed  Google Scholar 

  41. Zhou X, Shi M, Cao J, Yuan T, Yu G, Chen Y et al (2021) S100 calcium binding protein A10, A novel oncogene, promotes the proliferation, invasion, and migration of hepatocellular carcinoma. Front Genet 12:695036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mukai Y, Yamaguchi A, Sakuma T, Nadai T, Furugen A, Narumi K et al (2022) Involvement of SLC16A1/MCT1 and SLC16A3/MCT4 in l-lactate transport in the hepatocellular carcinoma cell line. Biopharm Drug Dispos 43(5):183–191

    Article  CAS  PubMed  Google Scholar 

  43. Jiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV et al (2015) Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cellular Mol Life Sci : CMLS 72(18):3425–3439

    Article  CAS  PubMed  Google Scholar 

  44. Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei R et al (2020) Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol 13(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S et al (2022) Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharmaceutica Sinica B 12(2):558–580

    Article  CAS  PubMed  Google Scholar 

  46. Sin SQ, Mohan CD, Goh RMW, You M, Nayak SC, Chen L, et al. (2022) Hypoxia signaling in hepatocellular carcinoma: challenges and therapeutic opportunities. Cancer metastasis reviews

  47. Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C et al (2023) Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut 72(5):958–971

    Article  CAS  PubMed  Google Scholar 

  48. Xia S, Pan Y, Liang Y, Xu J, Cai X (2020) The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine 51:102610

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zeng Q, Klein C, Caruso S, Maille P, Laleh NG, Sommacale D et al (2022) Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J Hepatol 77(1):116–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None

Funding

This study was funded by the Hubei Provincial Fund Committee (2022CFB122).

Author information

Authors and Affiliations

Authors

Contributions

DY contributed to the conceptualization, JS, BY, and YS were involved in data curation, Yu Zhou and Yanbing Zhang contributed to the formal analysis, DY and Yu Zhou were involved in writing—original draft, and YD and KZ contributed to writing—review and editing.

Corresponding authors

Correspondence to Kailiang Zhao or Youming Ding.

Ethics declarations

Conflict of interest

None.

Ethical approval

This study was approved by the Ethics Committee of Renmin Hospital of Wuhan University. Written informed consent was obtained from all patients to participate in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhou, Y., Zhang, Y. et al. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq data reveals dynamic changes in tumor-associated neutrophils in the tumor microenvironment of hepatocellular carcinoma and leads to the establishment of a neutrophil-related prognostic model. Cancer Immunol Immunother 72, 4323–4335 (2023). https://doi.org/10.1007/s00262-023-03567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03567-4

Keywords

Navigation