Skip to main content

Advertisement

Log in

BTK inhibition potentiates anti-PD-L1 treatment in murine melanoma: potential role for MDSC modulation in immunotherapy

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells (MDSC) have been linked to loss of immune effector cell function through a variety of mechanisms such as the generation of reactive oxygen and nitrogen species and the production of inhibitory cytokines. Our group has shown that signaling through Bruton’s tyrosine kinase (BTK) is important for MDSC function. Ibrutinib is an orally administered targeted agent that inhibits BTK activation and is currently used for the treatment of B cell malignancies. Using a syngeneic murine model of melanoma, the effect of BTK inhibition with ibrutinib on the therapeutic response to systemic PD-L1 blockade was studied. BTK was expressed by murine MDSC and their activation was inhibited by ibrutinib. Ibrutinib was not directly cytotoxic to cancer cells in vitro, but it inhibited BTK activation in MDSC and reduced expression of inducible nitric oxide synthase (NOS2) and production of nitric oxide. Ibrutinib treatments decreased the levels of circulating MDSC in vivo and increased the therapeutic efficacy of anti-PD-L1 antibody treatment. Gene expression profiling showed that ibrutinib decreased Cybb (NOX2) signaling, and increased IL-17 signaling (upregulating downstream targets Mmp9, Ptgs2, and S100a8). These results suggest that further exploration of MDSC inhibition could enhance the immunotherapy of advanced melanoma.

Précis

Inhibition of Bruton’s tyrosine kinase, a key enzyme in myeloid cellular function, improves therapeutic response to an anti-PD-L1 antibody in an otherwise fairly resistant murine melanoma model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trikha P, Plews RL, Stiff A et al (2016) Targeting myeloid-derived suppressor cells using a novel adenosine monophosphate-activated protein kinase (AMPK) activator. Oncoimmunology 5(9):e1214787

    Article  PubMed  PubMed Central  Google Scholar 

  3. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  PubMed  Google Scholar 

  4. Trikha P, Carson WE III (2014) Signaling pathways involved in MDSC regulation. Biochim Biophys Acta (BBA)-Rev Cancer. 1:55–65

    Article  Google Scholar 

  5. Mandruzzato S, Solito S, Falisi E et al (2009) IL4Rα+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562–6568

    Article  CAS  PubMed  Google Scholar 

  6. Vuk-Pavlović S, Bulur PA, Lin YI et al (2010) Immunosuppressive CD14+ HLA-DRlow/− monocytes in prostate cancer. Prostate 70(4):443–455

    Article  PubMed  PubMed Central  Google Scholar 

  7. Markowitz J, Brooks TR, Duggan MC et al (2015) Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease. Cancer Immunol Immunother 64(2):149–159

    Article  CAS  PubMed  Google Scholar 

  8. Zhang S, Ma X, Zhu C, Liu L, Wang G, Yuan X (2016) The role of myeloid-derived suppressor cells in patients with solid tumors: a meta-analysis. PLoS ONE 11(10):e0164514

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gonda K, Shibata M, Ohtake T et al (2017) Myeloid-derived suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in patients with breast cancer. Oncol Lett 14(2):1766–1774

    Article  PubMed  PubMed Central  Google Scholar 

  10. Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khair DO, Bax HJ, Mele S et al (2019) Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol 10:453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hodi FS, O’day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. New Eng J Med 363(8):711

    Article  CAS  PubMed  Google Scholar 

  14. Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  16. Tawbi HA, Forsyth PA, Algazi A et al (2018) Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med 379(8):722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mueller H, Stadtmann A, Van Aken H et al (2010) Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and PI3Kγ pathways. Blood J Am Soc Hematol 115(15):3118–3127

    CAS  Google Scholar 

  18. Lee KG, Xu S, Kang ZH et al (2012) Bruton’s tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci 109(15):5791–5796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85(6):996–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pal Singh S, Dammeijer F, Hendriks RW (2018) Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer 17(1):1–23

    Article  Google Scholar 

  21. Stiff A, Trikha P, Wesolowski R et al (2016) Myeloid-derived suppressor cells express bruton’s tyrosine kinase and can be depleted in tumor-bearing hosts by ibrutinib treatment ibrutinib impairs MDSC generation and function. Cancer Res 76(8):2125–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herman SEM, Mustafa RZ, Gyamfi JA et al (2014) Ibrutinib inhibits BCR and NF-κB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL. Blood J Am Soc Hematol 123(21):3286–3295

    CAS  Google Scholar 

  23. Byrd JC, Furman RR, Coutre SE et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369(1):32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang BY, Huang MM, Francesco M et al (2011) The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 13(4):1–15

    Article  Google Scholar 

  25. Apolloni E, Bronte V, Mazzoni A et al (2000) Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes. J Immunol 165(12):6723–6730

    Article  CAS  PubMed  Google Scholar 

  26. Mundy-Bosse BL, Young GS, Bauer T et al (2011) Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4+ T cells from patients with GI malignancy. Cancer Immunol Immunother 60(9):1269–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu J, Inomata T, Fujimoto K et al (2021) Ex Vivo-induced bone marrow-derived myeloid suppressor cells prevent corneal allograft rejection in mice. Invest Ophthalmol Vis Sci 62(7):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Quan N (2015) Immune cell isolation from mouse femur bone marrow. Bio Protoc 5(20):e1631–e1631

    PubMed  Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagej: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rane D, Carlson EJ, Yin Y, Peterson BR. Fluorescent detection of peroxynitrite during antibody-dependent cellular phagocytosis. In: Methods in Enzymology. Vol 640. Elsevier; 2020:1–35.

  31. Knewtson KE, Rane D, Peterson BR (2018) Targeting fluorescent sensors to endoplasmic reticulum membranes enables detection of peroxynitrite during cellular phagocytosis. ACS Chem Biol 13(9):2595–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Corzo CA, Cotter MJ, Cheng P et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701

    Article  CAS  PubMed  Google Scholar 

  33. Stiff A, Trikha P, Mundy-Bosse B et al (2018) Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing fc receptor-mediated natural killer cell function MDSC inhibit antibody therapy via nitric oxide production. Clin Cancer Res 24(8):1891–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. In: Seminars in Cancer Biology. Vol 16. Elsevier; 2006:53–65.

  35. Schneider T, Sevko A, Heussel CP et al (2015) Serum inflammatory factors and circulating immunosuppressive cells are predictive markers for efficacy of radiofrequency ablation in non-small-cell lung cancer. Clin Exp Immunol 180(3):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wesolowski R, Markowitz J, Carson WE (2013) Myeloid derived suppressor cells–a new therapeutic target in the treatment of cancer. J Immunother Cancer 1(1):1–11

    Article  Google Scholar 

  37. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate–mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67(23):11438–11446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Srikrishna G (2012) S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun 4(1):31–40

    Article  CAS  PubMed  Google Scholar 

  39. Bercusson A, Colley T, Shah A, Warris A, Armstrong-James D (2018) Ibrutinib blocks Btk-dependent NF-ĸB and NFAT responses in human macrophages during Aspergillus fumigatus phagocytosis. Blood J Am Soc Hematol 132(18):1985–1988

    CAS  Google Scholar 

  40. Fraietta JA, Beckwith KA, Patel PR et al (2016) Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood J Am Soc Hematol 127(9):1117–1127

    CAS  Google Scholar 

  41. Arneth B (2019) Tumor microenvironment. Medicina (B Aires) 56(1):15

    Article  Google Scholar 

  42. Veglia F, Hashimoto A, Dweep H et al (2021) Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J Exp Med 218(4):1

    Article  Google Scholar 

  43. Boivin G, Faget J, Ancey PB et al (2020) Durable and controlled depletion of neutrophils in mice. Nat Commun 11(1):2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weber R, Fleming V, Hu X, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol. 2018:1310.

  45. Kim K, Skora AD, Li Z et al (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci 111(32):11774–11779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fleming V, Hu X, Weller C et al (2019) Melanoma extracellular vesicles generate immunosuppressive myeloid cells by upregulating PD-L1 via TLR4 signaling induction of immunosuppression by extracellular vesicles. Cancer Res 79(18):4715–4728

    Article  CAS  PubMed  Google Scholar 

  47. Lu X, Horner JW, Paul E et al (2017) Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543(7647):728–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holtzhausen A, Harris W, Ubil E et al (2019) TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti–PD-1 therapy in melanoma TAM RTK inhibition reverses MDSC suppression and augments PD-1. Cancer Immunol Res 7(10):1672–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grauers Wiktorin H, Nilsson MS, Kiffin R et al (2019) Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol Immunother 68(2):163–174

    Article  CAS  PubMed  Google Scholar 

  50. Highfill SL, Cui Y, Giles AJ et al (2014) Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med. 6(237):ra67-237

    Article  Google Scholar 

  51. Zhou J, Liu M, Sun H et al (2018) Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut 67(5):931–944

    Article  CAS  PubMed  Google Scholar 

  52. Benner B, Quiroga DM, Good L, et al. A pilot study of Bruton’s tyrosine kinase inhibitor ibrutinib alone and in combination with PD-1 inhibitor nivolumab in patients with metastatic solid tumors. 2020.

  53. Young MRI. Th17 cells in protection from tumor or promotion of tumor progression. J Clin Cell Immunol. 2016;7(3).

  54. Wen L, Gong P, Liang C et al (2016) Interplay between myeloid-derived suppressor cells (MDSCs) and Th17 cells: foe or friend? Oncotarget 7(23):35490

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ma M, Huang W, Kong D (2018) IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int Immunopharmacol 59:148–156

    Article  CAS  PubMed  Google Scholar 

  56. Li J, Liu J, Mao X, Tang Q, Lu H (2014) IL-7 receptor blockade inhibits IL-17-producing γδ cells and suppresses melanoma development. Inflammation 37(5):1444–1452

    Article  CAS  PubMed  Google Scholar 

  57. Long M, Beckwith K, Do P et al (2017) Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Invest 127(8):3052–3064

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SS—NIH T32AI 106704-01A1, CA—NIH 1T32 GM139784-01A1, DS—AUA Urology Care Foundation Research Scholars Award, WEC—NCI UM1CA186712

Funding

National Institutes of Health,T32AI 106704-01A1,1T32 GM139784-01A1,T32AI 106704-01A1,American Urological Association Foundation, Urology Care Foundation Research Scholars Award, National Cancer Institute, UM1CA186712

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SHS, DA, WEC Data Curation: SHS, CDA, HS, DS, DA, BB, MJD, MD, FC, PT, GL, KLK, CC Formal Analysis: SHS, CDA, HS, DS, DA, MD, PT, GL, LY, JZ, CC Funding Acquisition: DS, WEC Investigation: SHS, CDA, HS Methodology: SHS, CDA, HS, WEC Project Administration: WEC Resources: KLK, WEC Supervision: WEC Visualization: SHS, CDA, HS, DA Writing - Original Draft Preparation: SHS, CDA, HS, DS, DA, WEC Writing - Review and Editing: All authors

Corresponding author

Correspondence to William E. Carson III.

Ethics declarations

Conflict of interests

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S.H., Angell, C.D., Savardekar, H. et al. BTK inhibition potentiates anti-PD-L1 treatment in murine melanoma: potential role for MDSC modulation in immunotherapy. Cancer Immunol Immunother 72, 3461–3474 (2023). https://doi.org/10.1007/s00262-023-03497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03497-1

Keywords

Navigation