Skip to main content

Advertisement

Log in

Chimeric antigen receptor macrophages activated through TLR4 or IFN-γ receptors suppress breast cancer growth by targeting VEGFR2

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor macrophage (CAR-M) is a promising immunotherapy strategy of anti-tumor due to its high infiltration, direct phagocytosis of tumor cells, immunomodulation of tumor microenvironment (TME) and linkage of innate and adaptive immunity. Here a series of novelly designed CAR-Ms by targeting vascular endothelial growth factor receptor-2 (VEGFR2), which highly expressed in tumor cells and TME, were evaluated. Their activation signals were transduced by Tlr4 or Ifn-γ receptors either alone or in combination, which were designed to mediate M1 polarization of macrophages as the downstream of lipopolysaccharide or Ifn-γ that had been widely reported. Our results showed that VEGFR2-targeting CAR-Ms could be activated under the stimulation of VEGFR2-expressing cells. They exhibited higher expression of CD86, MHCII and TNF-α in vitro and enhanced tumor suppressive abilities in vivo. Implantation of these CAR-Ms into 4T1 breast cancer-bearing mice could obviously inhibit the progression of tumor without significant toxic side effects, especially the group of mmC in which constructed with Tlr4 as the intracellular domain of CAR. In conclusion, this research provides a promising design of CAR that induce macrophages activation by Tlr4 and/or Ifn-γ receptors, and these CAR-Ms could effectively inhibit tumor growth through targeting VEGFR2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Pettitt D, Arshad Z, Smith J, Stanic T, Hollander G, Brindley D (2018) CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape. Mol Ther 26:342–353. https://doi.org/10.1016/j.ymthe.2017.10.019

    Article  CAS  PubMed  Google Scholar 

  2. Zhang BL, Qin DY, Mo ZM, Li Y, Wei W, Wang YS, Wang W, Wei YQ (2016) Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors. Sci China Life Sci 59:340–348. https://doi.org/10.1007/s11427-016-5027-4

    Article  CAS  PubMed  Google Scholar 

  3. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ (2016) Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 3:16011. https://doi.org/10.1038/mto.2016.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shah NN, Fry TJ (2019) Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 16:372–385. https://doi.org/10.1038/s41571-019-0184-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klichinsky M, Ruella M, Shestova O et al (2020) Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 38:947–953. https://doi.org/10.1038/s41587-020-0462-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Niu Z, Chen G, Chang W et al (2021) Chimeric antigen receptor-modified macrophages trigger systemic anti-tumour immunity. J Pathol 253:247–257. https://doi.org/10.1002/path.5585

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Tian L, Dai X et al (2020) Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol 13:153. https://doi.org/10.1186/s13045-020-00983-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kang M, Lee SH, Kwon M et al (2021) Nanocomplex-mediated in vivo programming to chimeric antigen receptor-m1 macrophages for cancer therapy. Adv Mater 33:e2103258. https://doi.org/10.1002/adma.202103258

    Article  CAS  PubMed  Google Scholar 

  9. Duan Z, Luo Y (2021) Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther 6:127. https://doi.org/10.1038/s41392-021-00506-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2017) Pillars Article: M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 2000. 164: 6166–6173. J Immunol 199:2194–2201. https://doi.org/10.4049/jimmunol.1701141

    Article  CAS  PubMed  Google Scholar 

  11. Fitzgerald KA, Kagan JC (2020) Toll-like Receptors and the Control of Immunity. Cell 180:1044–1066. https://doi.org/10.1016/j.cell.2020.02.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151. https://doi.org/10.1016/j.cyto.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Gocher AM, Workman CJ, Vignali DAA (2022) Interferon-gamma: teammate or opponent in the tumour microenvironment? Nat Rev Immunol 22:158–172. https://doi.org/10.1038/s41577-021-00566-3

    Article  CAS  PubMed  Google Scholar 

  14. Martinez-Sabadell A, Arenas EJ, Arribas J (2022) IFNgamma signaling in natural and therapy-induced antitumor responses. Clin Cancer Res 28:1243–1249. https://doi.org/10.1158/1078-0432.CCR-21-3226

    Article  CAS  PubMed  Google Scholar 

  15. Ni L, Lu J (2018) Interferon gamma in cancer immunotherapy. Cancer Med 7:4509–4516. https://doi.org/10.1002/cam4.1700

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472. https://doi.org/10.1016/j.ccell.2015.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40:310–327. https://doi.org/10.1016/j.it.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  18. Anderson NR, Minutolo NG, Gill S, Klichinsky M (2021) Macrophage-based approaches for cancer immunotherapy. Cancer Res 81:1201–1208. https://doi.org/10.1158/0008-5472.CAN-20-2990

    Article  CAS  PubMed  Google Scholar 

  19. Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945. https://doi.org/10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26:78. https://doi.org/10.1186/s12929-019-0568-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaneda MM, Messer KS, Ralainirina N et al (2016) PI3K gamma is a molecular switch that controls immune suppression. Nature 539:437–442. https://doi.org/10.1038/nature19834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Foubert P, Kaneda MM, Varner JA (2017) PI3Kgamma activates integrin alpha4 and promotes immune suppressive myeloid cell polarization during tumor progression. Cancer Immunol Res 5:957–968. https://doi.org/10.1158/2326-6066.CIR-17-0143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936. https://doi.org/10.1038/nature04478

    Article  CAS  PubMed  Google Scholar 

  24. Huang Z, Zhao B, Qin Z et al (2019) Novel dual inhibitors targeting CDK4 and VEGFR2 synergistically suppressed cancer progression and angiogenesis. Eur J Med Chem 181:111541. https://doi.org/10.1016/j.ejmech.2019.07.044

    Article  CAS  PubMed  Google Scholar 

  25. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176:1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lugano R, Ramachandran M, Dimberg A (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 77:1745–1770. https://doi.org/10.1007/s00018-019-03351-7

    Article  CAS  PubMed  Google Scholar 

  27. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17:457–474. https://doi.org/10.1038/nrc.2017.51

    Article  CAS  PubMed  Google Scholar 

  28. Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L (2011) Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 32:88–111. https://doi.org/10.1016/j.mam.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  29. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. https://doi.org/10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  30. Blagosklonny MV (2004) Antiangiogenic therapy and tumor progression. Cancer Cell 5:13–17. https://doi.org/10.1016/s1535-6108(03)00336-2

    Article  CAS  PubMed  Google Scholar 

  31. Melincovici CS, Bosca AB, Susman S, Marginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM (2018) Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 59:455–467

    PubMed  Google Scholar 

  32. Zheng MW, Zhang CH, Chen K et al (2016) Preclinical Evaluation of a novel orally available SRC/Raf/VEGFR2 Inhibitor, SKLB646, in the treatment of triple-negative breast cancer. Mol Cancer Ther 15:366–378. https://doi.org/10.1158/1535-7163.MCT-15-0501

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36–42. https://doi.org/10.1038/sj.cr.7290262

    Article  PubMed  Google Scholar 

  34. Kapellos TS, Taylor L, Lee H, Cowley SA, James WS, Iqbal AJ, Greaves DR (2016) A novel real time imaging platform to quantify macrophage phagocytosis. Biochem Pharmacol 116:107–119. https://doi.org/10.1016/j.bcp.2016.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wonderling RS, Ghaffar A, Mayer EP (1996) Lipopolysaccharide-induced suppression of phagocytosis: effects on the phagocytic machinery. Immunopharmacol Immunotoxicol 18:267–289. https://doi.org/10.3109/08923979609052736

    Article  CAS  PubMed  Google Scholar 

  36. Ivashkiv LB (2018) IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol 18:545–558. https://doi.org/10.1038/s41577-018-0029-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123:3190–3200. https://doi.org/10.1172/JCI70212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y, Adjei AA (2015) Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist 20:660–673. https://doi.org/10.1634/theoncologist.2014-0465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL (2019) Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 19:568–586. https://doi.org/10.1038/s41568-019-0183-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Axelrod ML, Cook RS, Johnson DB, Balko JM (2019) Biological Consequences of MHC-II expression by tumor cells in cancer. Clin Cancer Res 25:2392–2402. https://doi.org/10.1158/1078-0432.CCR-18-3200

    Article  CAS  PubMed  Google Scholar 

  41. Forero A, Li YF, Chen DQ et al (2016) Expression of the MHC class ii pathway in triple-negative breast cancer tumor cells is associated with a good prognosis and infiltrating lymphocytes. Cancer Immunol Res 4:390–399. https://doi.org/10.1158/2326-6066.Cir-15-0243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R (1994) Human B7–1 (CD80) and B7–2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1:793–801. https://doi.org/10.1016/s1074-7613(94)80021-9

    Article  CAS  PubMed  Google Scholar 

  43. Lang TJ, Nguyen P, Peach R, Gause WC, Via CS (2002) In vivo CD86 blockade inhibits CD4+ T cell activation, whereas CD80 blockade potentiates CD8+ T cell activation and CTL effector function. J Immunol 168:3786–3792. https://doi.org/10.4049/jimmunol.168.8.3786

    Article  CAS  PubMed  Google Scholar 

  44. Kaneda MM, Messer KS, Ralainirina N et al (2016) PI3Kgamma is a molecular switch that controls immune suppression. Nature 539:437–442. https://doi.org/10.1038/nature19834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones SA, Jenkins BJ (2018) Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 18:773–789. https://doi.org/10.1038/s41577-018-0066-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In the design of CAR-M, Prof Rong Xiang and Yi Shi from Nankai University have given good suggestions. Sincere acknowledgment to them for their kindly support. Elements used for Fig.2b in this article were downloaded from https://smart.servier.com. The Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License. This work was supported by the Prospective Research Program of the Foundation for the Development of Frontier Technology of Cell Therapy of Changzhou Xitaihu (2022-P-009, Y.L.), the Fundamental Research Funds for the Central Universities (3332022181, Z.D.) and the Bilateral Inter-Governmental S&T Cooperation Project from Ministry of Science and Technology of China (2018YFE0114300, Y.L.).

Funding

This work was supported by the Prospective Research Program of the Foundation for the Development of Frontier Technology of Cell Therapy of Changzhou Xitaihu (2022-P-009, Y.L.), the Fundamental Research Funds for the Central Universities (3332022181, Z.D.) and the Bilateral Inter-Governmental S&T Cooperation Project from Ministry of Science and Technology of China (2018YFE0114300, Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

The chimeric antigen receptors were designed by ZD and evaluated by ZL and ZD. The conditions for animal experiments were established by ZW. CC helped with the analysis and interpretation of results. The manuscript was written by ZL and edited by ZD and YL. The financial support came from funds of YL and ZD. All authors contributed to manuscript revision, read, and approved the submitted version.

Corresponding author

Correspondence to Yunping Luo.

Ethics declarations

Conflict of interest

ZD, ZL and YL have filed a patent on the design and application of the CAR-M cells described in this project for tumor immunotherapy with National Intellectual Property Administration of China. The authors declare no other competing interests.

Ethics approval

All experiments involving animals were approved by the Institute Research Ethics Committee of Peking Union Medical College (2021.9.2/ACVC-A01-2021–039) and carried out under the guidelines on laboratory animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 365 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Li, Z., Wang, Z. et al. Chimeric antigen receptor macrophages activated through TLR4 or IFN-γ receptors suppress breast cancer growth by targeting VEGFR2. Cancer Immunol Immunother 72, 3243–3257 (2023). https://doi.org/10.1007/s00262-023-03490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03490-8

Keywords

Navigation