Skip to main content

Advertisement

Log in

Murine regulatory T cells utilize granzyme B to promote tumor metastasis

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Regulatory T cells (Tregs) possess a wide range of mechanisms for immune suppression. Among them, Granzyme B (GzmB) and perforin expressed by Tregs were shown to inhibit tumor clearance in previous reports, which contradicted the canonical roles of these cytotoxic molecules expressed by cytotoxic T cells and NK cells in antitumor immune responses. Given the ability of the tumor to manipulate the microenvironment, Treg-derived GzmB function may represent an important approach to aid in tumor growth as well as facilitating tumor metastasis. In this study, we utilized Treg-specific GzmB knockout (Foxp3creGzmBfl/fl) mice to test whether Treg-derived GzmB can aid in tumor progression and metastasis. Using an IL-2 complex to activate GzmB expression in the non-immunogenic B16-F10 tumor model, we provide evidence to show that GzmB produced by Tregs is important for spontaneous metastasis to the lungs. In addition, we depleted CD8 + T cells to selectively measure the impact of Treg-derived GzmB in an experimental lung metastasis model by intravenous injection of B16-F10 tumor cells; our results demonstrate that Treg-derived GzmB plays an important role in increasing the metastatic burden to the lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during current study are available from the corresponding author upon reasonable request.

References

  1. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21(6):903–914

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18(5):723–737

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakaguchi S et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    Article  CAS  PubMed  Google Scholar 

  4. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    Article  CAS  PubMed  Google Scholar 

  5. Khattri R et al (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4(4):337–342

    Article  CAS  PubMed  Google Scholar 

  6. Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 30:733–758

    Article  CAS  PubMed  Google Scholar 

  7. Fan H et al (2009) Induction of antigen-specific immune tolerance by TGF-beta-induced CD4+Foxp3+ regulatory T cells. Int J Clin Exp Med 2(3):212–220

    CAS  PubMed  PubMed Central  Google Scholar 

  8. von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6(4):338–344

    Article  Google Scholar 

  9. Yang S et al (2015) Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348(6234):589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shevach EM et al (2006) The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev 212:60–73

    Article  CAS  PubMed  Google Scholar 

  11. Sakaguchi S et al (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32

    Article  CAS  PubMed  Google Scholar 

  12. Chen ML et al (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102(2):419–424

    Article  CAS  PubMed  Google Scholar 

  13. Rouse BT, Sarangi PP, Suvas S (2006) Regulatory T cells in virus infections. Immunol Rev 212:272–286

    Article  CAS  PubMed  Google Scholar 

  14. Sugimoto K et al (2003) Suppression of HCV-specific T cells without differential hierarchy demonstrated ex vivo in persistent HCV infection. Hepatology 38(6):1437–1448

    PubMed  Google Scholar 

  15. Li F et al (2018) Tumor-infiltrating Treg, MDSC, and IDO expression associated with outcomes of neoadjuvant chemotherapy of breast cancer. Cancer Biol Ther 19(8):695–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kotsakis A et al (2016) Prognostic value of circulating regulatory T cell subsets in untreated non-small cell lung cancer patients. Sci Rep 6:39247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X et al (2015) Identification of a FOXP3(+)CD3(+)CD56(+) population with immunosuppressive function in cancer tissues of human hepatocellular carcinoma. Sci Rep 5:14757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woo EY et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61(12):4766–4772

    CAS  PubMed  Google Scholar 

  19. Cao X (2010) Regulatory T cells and immune tolerance to tumors. Immunol Res 46(1–3):79–93

    Article  PubMed  Google Scholar 

  20. Cao X et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646

    Article  CAS  PubMed  Google Scholar 

  21. Boissonnas A et al (2010) Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity 32(2):266–278

    Article  CAS  PubMed  Google Scholar 

  22. Arias M et al (2017) The untold story of Granzymes in oncoimmunology: novel opportunities with old acquaintances. Trends Cancer 3(6):407–422

    Article  CAS  PubMed  Google Scholar 

  23. Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20:323–370

    Article  CAS  PubMed  Google Scholar 

  24. Tibbs E, Cao X (2022) Murine myeloid derived suppressor cells possess a range of suppressive mechanisms-Granzyme B is not among them. Cancer Immunol Immunother 71(9):2255–2266

    Article  CAS  PubMed  Google Scholar 

  25. Mohammadpour H et al (2018) Host-derived serine protease inhibitor 6 provides Granzyme B-independent protection of intestinal epithelial cells in murine graft-versus-host disease. Biol Blood Marrow Transplant 24(12):2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Du W et al (2018) Serine protease inhibitor 6 protects alloreactive T cells from Granzyme B-mediated mitochondrial damage without affecting graft-versus-tumor effect. Oncoimmunology 7(3):e1397247

    Article  PubMed  Google Scholar 

  27. Du W et al (2016) Granzyme B contributes to the optimal graft-versus-tumor effect mediated by conventional CD4(+) T cells. J Immunol Res Ther 1(1):22–28

    PubMed  PubMed Central  Google Scholar 

  28. Bian G et al (2013) Granzyme B-mediated damage of CD8+ T cells impairs graft-versus-tumor effect. J Immunol 190(3):1341–1350

    Article  CAS  PubMed  Google Scholar 

  29. Du W et al (2015) Granzyme B-mediated activation-induced death of CD4+ T cells inhibits murine acute graft-versus-host disease. J Immunol 195(9):4514–4523

    Article  CAS  PubMed  Google Scholar 

  30. Cai SF et al (2010) Granzyme B is not required for regulatory T cell-mediated suppression of graft-versus-host disease. Blood 115(9):1669–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai SF et al (2009) Differential expression of granzyme B and C in murine cytotoxic lymphocytes. J Immunol 182(10):6287–6297

    Article  CAS  PubMed  Google Scholar 

  32. Fehniger TA et al (2007) Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26(6):798–811

    Article  CAS  PubMed  Google Scholar 

  33. Revell PA et al (2005) Granzyme B and the downstream granzymes C and/or F are important for cytotoxic lymphocyte functions. J Immunol 174(4):2124–2131

    Article  CAS  PubMed  Google Scholar 

  34. Boyman O et al (2006) Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311(5769):1924–1927

    Article  CAS  PubMed  Google Scholar 

  35. Liao W, Lin JX, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38(1):13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamaguchi T, Sakaguchi S (2006) Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 16(2):115–123

    Article  CAS  PubMed  Google Scholar 

  37. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307

    Article  CAS  PubMed  Google Scholar 

  38. Zhao DM et al (2006) Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 107(10):3925–3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gondek DC et al (2005) Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174(4):1783–1786

    Article  CAS  PubMed  Google Scholar 

  40. Aggarwal S, Sharma SC, Das SN (2017) Dynamics of regulatory T cells (Tregs ) in patients with oral squamous cell carcinoma. J Surg Oncol 116(8):1103–1113

    Article  CAS  PubMed  Google Scholar 

  41. Tibbs E, Cao X (2022) Emerging canonical and non-canonical roles of Granzyme B in Health and disease. Cancers (Basel) 14(6):1436

    Article  CAS  PubMed  Google Scholar 

  42. Zhou C et al (2021) Identification of pyroptosis-related signature for cervical cancer predicting prognosis. Aging 13(22):24795–24814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goldman MJ et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38(6):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raja SM et al (2005) A novel mechanism for protein delivery: granzyme B undergoes electrostatic exchange from serglycin to target cells. J Biol Chem 280(21):20752–20761

    Article  CAS  PubMed  Google Scholar 

  45. Gapud EJ et al (2021) Granzyme B induces IRF-3 Phosphorylation through a perforin-independent proteolysis-dependent signaling cascade without inducing cell death. J Immunol 206(2):335–344

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funds through the National Cancer Institute (R01CA184728), Cancer Center Support Grant (P30CA134274), the National Institute of Allergy and Infectious Diseases (T32AI095190), and the Maryland Department of Health's Cigarette Restitution Fund (CRF) Program and used shared core facilities supported by University of Maryland Greenebaum Comprehensive Cancer Center (UMGCC) Support Grant (P30CA134274).

Author information

Authors and Affiliations

Authors

Contributions

E.T. and X.C. designed the project, performed the experiments and wrote the manuscript. R.R.K.K., D.J. and L.W. performed in vivo tumor experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xuefang Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tibbs, E., Kandy, R.R.K., Jiao, D. et al. Murine regulatory T cells utilize granzyme B to promote tumor metastasis. Cancer Immunol Immunother 72, 2927–2937 (2023). https://doi.org/10.1007/s00262-023-03410-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03410-w

Keywords

Navigation